```
TITLE Articulated Multimedia Physics. Lesson 12. Hork,
Energy, and Pouer.
New York Inst. of Tech., 0ld Westbury.
[65]
190p.
MF-\$0.65 HC-\$6.58
*College Science; Computer Assisted Instruction;
*Instructional Materials; *Mechanics (Physics);
*Multimedia Instruction; Physics: Science Education;
*Study Guides; Supplementary Textbooks
```

ABSTRACT
As the twelfth lesson of the srticulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to work, energy, and power. The topics are concerned with kinetic and potential energy, energy transfer in free falling bodies, and conservation laws. The content is arranged in scrambleत form, and the use of matrix transparencies is required for students to control their learning activities. Students are asked to use magnetic tape playback, instructional tapes, and single conrept films at the approfriate place in conjunction with the worksheet. Included are a homework problem set and illustrations for explanation purposes. Related documents are SE 015963 through SE 015977.
(CC)

ARTICULATED

MULTIMEDIA

PHYSICS

US DEPMRTMENT OF HEALTH EOUCATIONS WELFARE hationalinstituteo

LESSON

 (12)
NEW YORK INSTITUTE OF TECHNOLOGY

Old Westbury, Long Island
New York, NoY.

ARTICULATED MULTIMEDIA PHYSICS

Lesson Number 12

WORK, ENERGY, AND POWER

IMPORTANT: Your attention is again called to the fact that this is not an ordinary book. It's pages are scrambled in such a way that it.cannot be read or studied by turning the pages in the ordinary sequence. To serve properly as the cu'uing element in the Articulated Multimedia Physics Course, this Study Guide must be used in conjunction with a Program Control equipped with the appropriate matrix transparency for this Lesson. In addition, every Lesson requires the availability of a magnetic tape playback and the appropriate cartridge of instructional tape to be used, as signaled by the study Guide, in conjunction with the Worksheets that appear in the blue appendix section at the end of the book. Nany of the lesson Study Guides also call for viewing a single concept film at an indicated place in the work. These films are individually viewed by the student usires a special prom jector and screen; arrangements are made and instructions are given for synchronizing the tape playback and the film in each case.

COPYRIGHT ACKNOWLEDGEMENT

Material on white sheets: Copyright 1965 by Welch Scientific Company. All rights reserved. Printed in U.S.A. Grateful acknowledgement is made to the holder of the copyright for the use of this material in this validation version of the Study Guide.

Material on colored sheets: Copyright 1967 by the New York Institute of Technology. All rights reserved. Printed in U.S.A.

Energy is a iamiliar word. You say in or think about it often in your everyday life. Afrex a tingling shower in the morning, you may feelfit and full of energy, ready for the tasks of the day. As the hours pass and you perform the jobs you must do to furcher your education or help you make a living, you graduaily become tired. By the time dinnex is through, you may say that you have little energy left. A good night's sleep, a nourishing. breakfast, and you're prepared to repeat the performance of the previous day, your energy having been restored. In many ways, this common use of the energy idea is closely related to the scientist's definition of it, but it is a little too loose for the physicist's needs.

Speaking of everyday things that tie in with the concept of energy, we might mention fuels as having a strong conntection with energy. The food you eat is the fuel that supplies your muscular energy; the gasoitne in your automobile provides the energy it needs to climb a hili or to keep moving against the interminable retardation of iriction and air zesistance; rhe coal, oil, or wood in the engine suppiles the energy needed to run a tratn, plow a field, or lift the gixders used in building a skysczaper. The energy of the sun, scored in growing things and wateriails, is the result of the consumpicion of atomic "frel."

Please go on ro page 2.

Energy, zegardless of tis source oz kind, is almost always invoived in doing a fob. Lifting a hamer, speeding up a rzain, running a lawnmower, and just walking about are jobs chat use fuel. Such fuel-using jobs can be done because of energy that is converted from one form to another. We starc with an energy-scurce and then, by transfezting this energy from one form to another, we make it suitable for the task at hand We knorj of no method or technique whereby energy can be areated out of norhing; we can change it, move it about from one place to anothers and design new and better devices to use it, but we canmot make it.

Racher than try to define energy pamatureiy, let us state in detail why we belfeve that energy is involved in the fuel-using jobs described above. We know, finsc of all, that an unbaianced force must be acting when we lift a hammer, fow a lawn, or climb a ceee; then, as a reswlt of the unbalanced force, something moves. So we can start by saying that energy is involved fif an unbalanced furce sauses mocion, or produces certain types of changes in mocion. This will have to do for the moment; but be assured that we shall nos stop with this hazy deacription of energy.

Please go ont te page 3.

When forces are exerted and things move, energy is converted from one for, to another or transferred from one object to another. When such conversions of cransfers occur, we say that work has been done. So you see, the concept of work is inextricably interwoven with the concept of energy; you can hardiy speak of one of them.without bringing the other into the discussion. In a sense, work is the measure of the job done. For instaince, if a derrick lifts one car it has done a certain amount of work; if it then lifts a second, fdentical car so the same height as the first, the total job (or work done) is twice that involved in ilfting the first car alone. In another sense, work is the measure of the fuel used to do a job. Clearly, the fuel needed to lift two cars to a given height is twice that required to lift one of them if both cars are identical. The two ideas are quite the same, both of them implying that work is a measure of the energy converted or transferred.

Many of our questions could be answered if we could find a combination of force and motion that would serve as a measure of energy transfer. Our objective, then, is to find some such combination which is proportional to the fuel used and to the total size of the job done. This combination of force and erstion could ther represent work; so, for our present purposes, any quantity we call "work" must be proportional to the magnitude of the task accomplished, or to the fuel used to accomplish it.

Please go on to page 4.

To help us arrive at a definition of work which meets the requirements outlined in the introduction to thia lessor, we shall analyze the factors that go into the performance of a spectific job such as that pictured in Figure 1.

Figure a
A number of crates, each having exactiy the emmetwigh, are to be hoisted to the deck of a ireighter standing in a haxbe:. The job is to be done by a gasoline-drive crane on the aock. What we want to know is this: What governs the amount of fuel (gasoline) wsed in accomplishing this job?

Well, consider the weight of the crates ixiss. To lift a single crate, the crane must exert enough focse on it wo overcome the pull of gravity and start the crate moving away from the ground. Suppose that a single crate is so heavy that the cxane can ilit cniy one at a cime. If che forman on the job wanted to speed up the wurk and ioad cwo at a rime, he might bing a second crane to the dock so that both coild woxk simultanecusiy. Then, in this case as the crates went up, the totai force would be twice that exerted by a single crane but che fuel used wowid also be cwice than of a single crane. Evidently; the fuel consumption is proportional co the roxce applied by the machine. But, as you read in the inctoduction, work is to be measured in terms of the fuel used to accomplish a job. So, tentarively at least, what might we conclude?
(1)

A The work done is inversely proporional to the force.
B The work done is directly proporyional co che force.

YOLR ANSWER --- B

Just how did you reach this conclusion? Since 288 is just $2 / 3$ of 432 , it may be that you thought of $t=3.00$ sec as represencing the beginning of the third second. Thus, you may have thought that the K 。E. remaining in the ball is $2 / 3$ of the original before free-fall began. This is incorrect.

Properly, $t=0$ marks the instant you start you: stop-watch, $x=1$ is one second later, $t=2$ is after a lapse of two secoris, and $t=3$ marks the passing of three seconds.

Do you remember the total time for the fall?
Where will the ball be after it has heen falling for three seconds? When the ball reaches the ground, ail of the original $P_{0} E$. becomes K.E,

Please return to page 76. Pick a better answer this time.

Very good. If oux definition of wozk as a measure of energy transfez is to be of any yalue, then we wust agree chat force FT does no work at all, No fuel is used to produce Fi, no energy is consumed, hence no work is done.

We can improve our description of the meaning of "work" now Work is the product of an snbaysuced foree and the distance moved in the direcrion of the forcéo This could suifice as a definition of work for most situations; bu: for universal applicagion. it swill needs some improwement. Look at the foree in Figume 4 。

Figure 4
This force (F) acts at an angle θ to the hoxizoncal, but the block moves hokizontally along, che cable. According to the above definition, the block does not move in the direcrion of the foree if you adhere strictly: to the definition, you must conclude that force F does no work at all. But you KNOW that energy must be expended in moving the block horizontally agiinst friction; hence wotk has to be accomplished. How do we resolve this dilemma?

Think back to resolurion of vecrors. Force F may be considered to be made up of two parts: a homizontal component and a \qquad component. What's the missing word? Turn to page 75 co check.

YOUR ANSWER --- A

The mathematical statement of the Second Law does NOT state that $\vec{i}=a / m$ 。 Perhaps you need to review your nutes, although you should remember that acceleration is directly proportional to unbalanced force and inversely proportional to the mass of the body being accelerated.

Please return to page 91 and make a better selection.

YOUR ANSTER --- A

This is incorvect,

One of the answexs definitely does express the meaning of $\frac{\Delta d}{\Delta t}$ y. propesiy.

Please xetwin to page 88 and see if you can decide which of the given answexs does rhis.

YOUR ANSWER --- B

Not quite.

The substitution yields this first result:

$$
W=m \times \frac{v^{2}}{2 d} \times d
$$

But when this is simplified, you don't get the answer you chose.

So, return to page 82 , please and select a better answer.

YOUR ANSWER --- C

This is incorrect on two connts!

Fixst, if the watt is a unit of power, the watt-second cannot possibly measure power, whict is the xace of doing work.

Second, if the watt-second were truly a unit of power, it could not be the same as ajoule, since the latter is a unit of work or energy!

Cone now. If you will bear in mind trat a watt and a joule per second axe identical units, you should have ro difficulty in choosing the right answer.

Please return to page 140 and try once more.

YOUR ANSWER --- A

This doesn't follow from our reasoning.

Every drop of gasoline used by the crane engine can rotate the cable drum just so much. To lift a crate twice the distance, the drum would have to complete twice as many revolutions. If each drop of gasoline can account for just so many turns, you can't expect the drum to turn twice as many times without using more gasoline.

Please return to page 40. Choose a better answer.

```
YOUK ANSWER - - B
```

A kilowatt uses the same piefix as a kilometer. This prefix aiways means "l,000 times"; hence, a kilowatt is 1,000 watts.

The watt is a unit of power so is the kilowatt. If we multiply a power unit such as the kilowart by a cime unit such as the hour, we cannot obtain a power unit from the product.

Thus, a kilowat-hour is not a unit of power. To find out what it zeally measures, do this:

$$
\begin{aligned}
\text { kw-hr } & =\text { power } \times \text { Eime } \\
\text { power } & =\frac{\text { work }}{\text { time }} \\
\text { so } \quad \text { kw-hr } & =\frac{\text { work }}{\text { time }} \times \text { time }
\end{aligned}
$$

So what is the kilowart-hour?

Piease teturn to page $\$ 45$ and choose the right answer now.

There are several things wrong with the answer you chose.

You cannot equate two different kinds of quantities. Distance moved is a single, fundamental measure of displacement while work is a combination of force and motion and cannot possibly be equal to distance.

As an example which shows the fallacy of this kind of statement, consider a box containing marbles. It is safe to say that the weight of the box depends upon the number of marbles in the box, but you could never say that the weight is equal to the number of marbles. Suppose the box contains 173. marbles and weighs 2.9 lb . It wouldn't be correct to write $2.9 \mathrm{lb}=$ 173 marbles.

From the point of view of units alone, you can't have an equation with units of different meaning on either side of the equal sign.

Please return to page 56 and choose an alternaclve answer。

You'ze confusing energy and momentum. Find the total momentum of the system, not the total kinetic energy.

Return to the original question on page 127 and read the explanatory matetial once more-carefully. Then choose a better answer.

This page has been inserced to maincain continuity of text. Ir $1 s$ not intended to convey lesson information.

```
YOUR ANSWER --- B
```

You chose the wrong component. We're quite sure you realized that the work done here must be the product of the horizontal component of F and the displacement d. But F_{V} is the symbol for the vertical component; this component does no work, of course, because there is no vertical motion in the system.

Please return to page 75 and choose the right answer.

YOUR ANSWER --- B

We are aware of the thinking that led you to choose this answer. You figured that, if 147 joules of work were expended in getting the block to the top of the shelf, then 147 joules of kinecic energy must have been transferied to it, since no energy is being lost to friction: Up to a point this is good thinking, but it falls short of the rruth because the motionless block has no velocity on the shelf; hence, it cannot have kinetic energy. That is, since

$$
K_{0} E_{0}=\frac{1}{2} \dot{m v}^{2}
$$

and $v=0$, then K 。E. must be zero.
This may make you wonder what happened to the work that went into raising the block to the shelf. And well it should!

We'll help you out of this dilemma shortly.

In the meantime, you will have to return to page 150 and then select the only possible answer.

```
YOUR ANSWER --- B
    We are almost certain that you arrived at this answer as a result of
two separate but common errors.
```

The determination of the K.E. of the bullet as it leaves the muzzie of the rifie calls for the solution of:

$$
K_{0} E_{0}=i_{-m v}^{2}
$$

In substituting, you must be sure that the mass is given in kilograms and the velocity in mecezs per second. We think you used the wrong unit for one of these.

Next, you must remember to square the velocity, and also that the product mv^{2} is to be divided by 2 .

Please return to page il4. Make another choice after finding the correct answez.

Two quantities are inversely proportional when one decreases as the other increases. We are trying to establish a definition of work in a physical sense. We have said that we would measure work in terms of the size of the job performed or the amount of fuei used to complete it.

It seems logical to connect the factors we have just considered in this manner:

1. To lift a single crate, a certain amount of fuel is needed.
2. To lift two crates, two cranes axe required, thus calling for twice the applied force.
3. Two cranes, however, require twice the fuel of one.
4. So to get twice the force, we need twice the amount of fuel.
5. Since work is measured by the amount of fuel used, we would then expect two cranes to do twice the work of one crane by exerting twice the force at a given time.

Thus, the two quantities we are relating are work and force, and we see that as the force increases, the work increases. Is this an inverse relationship?

Please return to page 4 and select the alternativa answer.

YOUR ANSWER --- D

That is not right. One of the answers is correct.
Go over your work. Remember, in soiving $K_{0} E_{0}=\frac{1}{2} \mathrm{mv}^{2}$, you must square the speed, multiply by the mass, and then divide by 2.

Please return to page.72. Choose the correct. answer.

This is not correct. You may determine the correct MKS energy unit in one of two ways.
(i) You may analyze the detivarion closely and notice that since work is a measure of energy, the energy equation having been obrained directly from the definition of work, energy units must be exactly the same as work units.
(2). You may substitute units in $K . E .=\frac{1}{2} m v^{2}$ and thus determine the unit you derive for the entire quantity.

We are quite sure you did not follow either of these procedures. If you had, your result would not have had the newton as an answer.

Plsase return to page 132. Select a better answer.

YOUR ANSWER --- B

The example appears in item $1(\mathrm{~d})$, not $\mathrm{I}(\mathrm{c})$ 。
Please keep your notebook up-to-date and in usable shape.

Piease return to page 138 and select another answer.

YOUR ANSWER --- A

This answer is incorrect.

You obtained this answer by multiplying the weight of the safe in pounds by the distance moved. This is a double error.

If you use the weight of the safe in this problem-and it should not be so used-it should be expressed in newtons rather than pounds.

However, in determining the work, the force that appears in $W=F d$ must be the one that is in the direction of the motion. The safe is moved horizontally but weight acts vertically.

Please return to page 142 and work the probsem again.

CORRECT ANSWER: The dealer answered, "The brown staliion can pull the haywagon up the hill much íaster then the black mare."

Here fis a new thought: Suppose you had a load of books that were to be placed on a high siozage sheif that covid be reached only by ciimbing a ladder. For the sake of simplicity, we'li imagine each of the books to weigh exactly 5.0 n , and that thete are 20 of them aitogether. Suppose furthez rhat they ate to be lifted a distance of 4,0 meters. Since 5.0 nt zepresents a inttle more than one pound of weight, you might carry 10 books up in a singie rrip, completing the job in two trips. The work done would then be:

$$
\begin{aligned}
W & =\text { Fi number of rrips } x \text { weight } x \text { height } \\
& =2(50 \mathrm{n} t \times 4.0 \mathrm{~m})=2(200 \mathrm{j})=400 \mathrm{j}
\end{aligned}
$$

Now, iet's say that yoir ilttle brother wants to do exactiy the same job but that he can carry only 1 book at a time as he mounts the ladder. This means that he will have to make 20 trips up the ladder. The work he would do would be:

$$
W=20(5.0 \mathrm{nt} \times 4.0 \mathrm{~m})=400 \mathrm{j}
$$

Cleariy, your lictie brother coes exactiy the same amount of work chat you du in compieting this job, but if an employer were looling for help in the fom of a book-scacker, he would hire you racher than your brother. What physical quancicy, not present heretofore in the concept of work and enexgy, has now appeared?
(33:

A A ladder.
B Time.

C Vertical distance.
D None of rhese。

YOUR ANSWER --- E

You are corzect. $P=\frac{F d}{r}=\frac{500 \mathrm{ntx} 6.0 \mathrm{~m}}{15 \mathrm{sec}}=200 \mathrm{j} / \mathrm{sec}$

To heip you understand the relarive magnitude oi a joule pez second, we'll discuss powes, in Engilish units briefly, bur will not work any problems fnvolving them.

In the English system, force is measuzed in pounds (1b), distance in feet fty, and rime in seconds: Hence, the unic of work is the $f r-i b$, and the unit of power is the $t \mathrm{t}-\mathrm{Bb} / \mathrm{sec}$. Eaziy in the development of the concepts invoiving powet, hoxess were used to do the work of pumping warer, grinding grain, hoisting stones, and so on, so thet it was natural to choose a power unit involving these animais. Ar first, one horsepower was described as che rate at which a particular kind of animai, an Engish dfay horse, could do the work. Obyiousiy, such a dexinition is inadequate for anything but the roughest kind of calculations. Later, the definition of the horsepower was pinsed down as:

$$
1 \text { horsepower }=1 \mathrm{Hr}=550 \mathrm{fe}-\mathrm{ib} / \mathrm{sec}
$$

Thus, the average hozse might be expected so be able to do $550 \mathrm{ft}-1 \mathrm{~b}$ of work in il second.

To heip you iix the relative size of the $j / s e c$ in your mind, we shall find the number of $\mathrm{j} / \mathrm{sec}$ in 1 horsepower. The process of determination is given on the next page it is not necessazy for you te memorize this, but it is important loz improving your facilicy wich unit conversion, and for a vaitable : eview, Thereroye, foliow each of rhe steps caretully to the conclusion.

Please go on to page 26.

We want to detezmine the muber of fonies pex second in i horsepower, caryying the work ro the ee signaricant figures.
(I) Write the detinition of $-\mathrm{j} / \mathrm{sec}: 1 \mathrm{jisec}=\frac{1.00 \mathrm{nt} \times 1.00 \mathrm{~m}}{1.00 \mathrm{sec}}$
(2) Thexe axe $3.28 \mathrm{fr} \pi \mathrm{m}$ and $4.45 \mathrm{nr} / \mathrm{ib}$, or $\mathrm{I} / 4.45 \mathrm{lb} / \mathrm{nt}$.
(3) Muitiplyirg : 1) by the conveisions in (2):
$1 \mathrm{j} / \mathrm{sec}=\frac{1.00 \mathrm{nt} \times \frac{1}{4 . \mathrm{Ib}} \times 1.00 \mathrm{~m} \times 3.28 \mathrm{ft} / \mathrm{m}}{1.00 \mathrm{sec}}$
(4) Simpiliying:

$$
\begin{aligned}
& \text { Jisec }=\frac{3.28}{4 \cdot 45} \frac{\mathrm{It}-1 \mathrm{~b}}{\mathrm{sec}} \\
& \mathrm{j} / \mathrm{sec}=0.38 \pm t-i b / \sec
\end{aligned}
$$

(5) From 4) we see at once that $1 \quad j=0.738 \mathrm{ft}-1 \mathrm{~b}$. This in itself is a valuable resuic. it shows that a jouie is less than ift-ib. So, there must be more joules than it-ibs in a HP , that is,

$$
1 \pm \mathrm{r}-\mathrm{b}=\frac{1}{0.738} \mathrm{~J}
$$

(6) We know that, by definicion, 1 HP $=550 \mathrm{ft}$-ib/sec.
(7) Hence,

$$
\begin{aligned}
& 1 \mathrm{HP}=550 \pm \mathrm{t}-1 \mathrm{~b} / \mathrm{sec} \times \frac{1}{0.738} \mathrm{j} / \mathrm{It}-1 \mathrm{~b} \\
& \text { or } 1 \mathrm{HP}=\frac{550}{0.758}-\frac{j}{\mathrm{sec}}=746 \mathrm{j} / \mathrm{sec} \\
& \text { Thus, } \mathrm{i} j / \mathrm{sec}=\frac{1}{746} \mathrm{HP}
\end{aligned}
$$

Please go on to page 2%

Here are the last two answers again:
$1 \mathrm{HP}=746 \mathrm{j} / \mathrm{sec}$
$1 \mathrm{j} / \mathrm{sec}=\frac{1}{746} \mathrm{HP}$

This is the result we are seeking. You will find in your reading that another name for a joule per second is a watt. Hence, a watt is a unit of \qquad
(35)

A Work.
B Energy.
C Power.

D None of these.

YOUR ANSINER --- A

You obtained this answer by summing up the two individual momenta without regard for algebraic sign. Momentum is a vector quantity and signs must be taken into account in all arithmetic or algebraic manipulations.

Please return to page 127 and select a better answer.

This page has been inserted to maintain continuity of text. It is not intended to convey lesson information

YOUR ANSWER --- B

If you write Newton's Second Law in any form, you cannot obtain an equality between F and $\mathrm{m} / \mathrm{a}_{0}^{\text {! }}$

Refer to your notes if necessary for a review of the mathematical statement of the Second Law, You shouid remember, however, that acceleration is directly proportional to the unbalanced force, and inversely proportional to the mass of the body being accelezated.

Please return to page 91 and make a better selection.

TOUR ALISWER --- A

You are correct. Inis follows irom the conservation principle. At the start of the swing, ali the energy is P : E. At the end of the swing, it is again all P.E. Hence, if the energy of the system is to remain constant, mgh' must be equal to mgh.

Inus, an ldeal pendulum would be a perfect energy converter. Eacin swing would see che bob rise to exactly the same height as before and, therefore, the pendulum would swing forever once started,

How to extract this energy to do useful work while keeping the penduium going is a problem in perperual motion. A pendulum clock has been devised, however, which uses very litrie external energy:

Please go on to page 32.

Before going on t: the x eal wortd of physics where ideal conditions may be zpproached but nevex quite zeainzed, here is one more application of the Princtple of Concexvation of Enexgy in connection with failing bodies. For simplicity, we shail use a numericai exampie.

A jet piane at an altituae of $9.00 \times 40^{3} \mathrm{~m}$ is caraying a $1,020 \mathrm{~kg}$ bomb. We want to find the kinetic energy of the bomb after it has been dropped and has fallen a distance of $6.00 \times 10^{3} \mathrm{~m}$ (COPY THIS PROBLEM). YCu will note thas the bomb hes iajien $2 / 3$ of the discames to the ground ritom its original blexude。

Now thexe is a difficuir way to soive this problem, but there is also an easy one. Unicutunately, the difilicult way is the obvious one. We'll go over rhis iterst. The problem suggeses that we find K. E . Which equation will we appiy:
(32)
$A \quad K_{v} E_{0}=m v^{2}$
B K.E. $=\frac{1}{2} \pi \Psi$
C Neirhex of these equations.

YOUR ANSWER --- A

This answer is incorrect.

Work the problem out again and determine the correct answer for yourself. Be sure your manipulations with exponents are correct.

Please return to page 137 , then choose another answer that matches your revised one.

How far does F_{T} in Figure 3 on page 99 cause the block to movet Remember that F_{T} is a reaction to W and that the block will not move vertically at ail as long as the table is there.

All right. F_{T} causes no motion of the block; this fact is established
Work is calculated from the expression $W=F d$. Now, if F_{T} does not cause any vertical motion, there is no d over which it acts; hence ivz F_{T}; the distance d is zero.

Under these conditions, would you still say that F_{T} does the same amount of work as F ?

Please return to page 99. Choose a better answer.

YOUR ANSWER --- B

You are correct. The proportionality between work and distance is almost self-evident in the relaiionship of the numbers chosen for the previous discussion.

Thus, we can write the proportionality this way:

$$
\begin{array}{ll}
W=k^{\prime} d \quad \text { whexe } W=\text { work, } d=\text { distance, and } k^{\prime}=a \\
& \text { proportionality constant. }
\end{array}
$$

Well, Iet's review a bit. We have found so fax that work is proportional to force ($\mathrm{W}=\mathrm{kF}$), and rhat work is also proportional to distance moved ($W=k^{\prime} d$). Both of rhese are direct proportions.

In the next step we want to combine the two proportions. This is done by putting tnem together like this:
$W=k^{\prime \prime} F d \quad$ where $k^{\prime \prime}$ is some combination of the two
proportionelity constants that appear in the separate statements above.
Hexe we can giwe the constant $k^{\prime \prime}$ a value of one (unity) by choosing our units correctly. If F is measured in newtons, and d is measured in meters, and if we assign a value of unity (without units) to $k^{\prime \prime}$, then what unit will we use for work?
(4)

A The newton-meter.
B The newton per meter.
C I don't recali how to do this.

YOUR ANSWER --- A

This is not correct.

A watt is the same as a joule per second. But if a joule is a unis ar work, then a joule per second is a unit which measures the time rare of doing work, not work itself.

Please rerurn to page 27 and select another answex.

YOUR ANSWER --- A

You are correct. To apply the relation: $K_{0} E_{0}=\frac{1}{2 m v}{ }^{2}$ we need to know the mass of the body and its final velocity as it reaches the ground.

All iight. The mass is known : 5.00 kg 。 We know the distance that the block will fall: 3.00 m . We know the gravitational acceleration: 9.8 $\mathrm{m} / \mathrm{sec}^{2}$. What equation do you have that will enable you to find the final velocity of a body falling from rest, if the mass of the body, its acceleration, and the distance through which it falls are all known?

Write this equation, please. Don't go any further until it is witten and you are certain thar ir is xight.

Now turn to page 139.

YOUR ANSWER --- C

inis is not a good answer. Although the acceleration of a freely falling body can be given as $980 \mathrm{~cm} / \mathrm{sec}^{2}$, this value is in CGS units.

This isn't what we want, is it?
Please remember the system we are working in.

Please return to page 128 and select the acceleration of free-rail in this system.

YOUR ANSWER --- C

Apparentiy you think that the total energy has been split down the middle, since half of 432 is 216 . This is not so.

At $t=3.00 \mathrm{sec}$, the ball has reached the ground so that, with respect to ground as a reference zero level, the height of the ball is now zero.

At zero height, how much potential energy does the ball have?

Check your thinking. Return to page 76 and select a better answer.

YOUR ANSWER --- B

You are cozrect. If three cranes were used, the force applied simultaneously to the craces would be three times that of a single crane, the fuel consumption would be chree times as great, and the work done, therefore, would be tripled.

So, if work is directly proportional to the applied force, we might write: $W=k F$ where $W=$ work, $F=$ unbalanced force, and $k=$ the conventional constant of proportionality.

Now, what else detemines how much work is done by the crane? Suppose the vertical distance trom the dock to the ship's deck is 20 feer. If we measured the fuel consumed by the gasoline engine in iliting the ciate a distance of 10 feet and found that ix required 0.01 gallon of gasoline to do iE, and then xepeated the fuel consumption measure for a distance of 20 feet straight up, what do you think we would find?
(2)

A To lift a crate 20 ft would require no more gasoline than to ift it 10 ft 。

B To lift a crate 20 ft would require 0.02 gal of gasoline.
C I don't understand.

You are correct. The basic equation relating distance and time is: $d=\frac{1}{2 g} t^{2}$ for a body that starts to fall from rest. When this is solved for t, you obtain the expression $t=\sqrt{2 d / g}$ 。

All right, let's find the time required for the ball to fall to earth.

$$
t=\sqrt{\frac{2 \times 44.1 \mathrm{~m}}{9.80 \mathrm{~m} / \mathrm{sec}^{2}}}=\sqrt{9.00 \mathrm{sec}^{2}}=3.00 \mathrm{sec}
$$

Now that we have the time needed for the ball to fall through 44. meters, we can proceed to part (b) of the problem.

At $t=0 \mathrm{sec}$, the ball has not yet started to fall. In short, its energy is entirely energy. Write the missing word and then please turn to page 76 .

YOUR ANSWER --- A

A ladder isn't a physicial quantity or number:

We may not have worked any problems involving ladders before, bu: we certainiy have deait with bodies that have been lifted above the ground. The ladder is merely another means of lifting; it introduces no new ideas:

Please return to page 24 and choose a betrex answei

YOUR ANSWER --- A

This is not true.

When a $120-1 b$ boy climbs a vertical ladder, his muscles must exert a minimum of 120 lb of force in order to overcome his weight. If chis muscular force, which is directed upward, causes him to move upward, then certainly work has been done because a force has caused motion.

Re-examine the problem afier returning to page 87. Think carefully to choose the right answer.

YOUR ANSWER --- C

With reference to the zero level, what is the height of the ball as it passes through position (1) of Figure 9 on page 60? It is zero, 1 sn 't it? But if $h=0$, then the potential energy, which is

$$
P_{\cdot} E_{0}=m g h
$$

must also be zero.
If this is the case, how can the toral energy of the bob comprise only $P_{\text {。 }}$.?

Please return to page 62 and choose a better answer.

YOUR ANSWER -- - C

This answer is not right.

You obtained it by multiplying the weight of the safe in newtons by the distance moved horizontally.

Remember that the force used in a work calculation must be acting in the direction of the motion. Weight acts vertically but this safe moved horizontally; hence you cannot use the weight of the safe as the force in $\mathrm{W}=\mathrm{Fd}$.

Please return to page 142 and select the right answer.

YOUR ANSWER --- B

Correct. Going back to our. equations of uniformly accelerated motion, you should remember this one:

$$
v=\text { at or, for this case, } v=g t
$$

Hence, what is the speed of the ball at the end of 1.00 sec of free fall? Write the answer; then turn to page 72.

YOUR ANSWER --- C
$\frac{1}{2} \mathrm{mv}^{2}$. You forgot to do something necessary for the solution of K.E. $=$ What did you neglect to do?

Correct your work, return to page 72 , and then choose the correct answer.

YOUR ANSWER --- C

Lex's run through some of our preliminary points.

We are tyying to develop a relationship between work and some combinaruon of foxce and mocion. In cur introducrion we used the wowd work as a measure of energy transfer, and said thar it was evident that work could be measured by the amount of fuel used in doing a particular job.

Now out objective is to find out just what factozs of torce and wocion govera the amount of wozk done of iuel used. We have alxeady decided ther work is proportional to rorce, but that there is something eise thar conrofols. the amount of woxk done besides rorce.

When work is done, force produces motion. In our example of the crane hoisting crates, we are applying common sense to the question: "How much more fuel is used in lifting a given crate 20 ft compared to the amount used to lift the same crate $10 \mathrm{ft}{ }^{\prime \prime}$ " If we can determine this, we may then be able to show how work done is governed by the motion that occurs while the work is being accomplished.

Please return to page 40. Try another answer.

CORRECT ANSWER: Since the mass of the stone is 20 kg , then from

$$
w=m g
$$

we find the weight to be: $\quad w=20 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{sec}^{2}=196 \mathrm{nt}$.
So we have:

$$
\begin{aligned}
& \mathrm{h}=\frac{1,440 \mathrm{j}}{196 \mathrm{nt}} \\
& \mathrm{~h}=7.3 \text { meters }
\end{aligned}
$$

Thus, when a $20-\mathrm{kg}$ stone is dropped from a height of 7.3 meters, it acquires 1,440 joules of $\mathrm{K} . \mathrm{E}$. when it reaches the ground.

Wheri an object is at rest at some height above grouid level, whatever energy it possesses is potential in nature; it has no kinetic energy because it is not mowfing. We know, too, that if the object is allowed to fall to ground level its energy upon impact with the ground will be all kinetic. Its potential energy will now be zero, since all the initial P.E. has been converted to K.E.

Please go on to page 50 .

Here is anorher question: Given a specific P.E. for a body raised to a height, can we calculate how much of this P, E. has been changed to K.E: at any instant--part of the way down--in its fall?

COPY THE FOLLOWING PROBLEM (It will be more convenient to work this one out to three significant figures.): A 1.00 kg ball is dropped under ideal conditions from a height of 44.1 meters.
(a) Determine the time required for it to reach the ground.
(b) Calculate its P.E. and K.E. for
(1) $t=0 \mathrm{sec}$
(2) $t=1.00 \mathrm{sec}$ (3) $t=3.00 \mathrm{sec}$

Now zuzn to page 51.

This problem is not quice as formidable as it first appears. From your copy of the problem, list the known quantities:

$$
\begin{aligned}
\mathrm{m} & =1.00 \mathrm{~kg} \\
\mathrm{~d} \text { or } \mathrm{h} & =44.1 \mathrm{~m} \\
\mathrm{~g} & =9.80 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

Part (a) of the problem calls for the determination of the time required for the ball to reach the ground. This is a straightforward question in unxformly accelerated motion as applied to bodies in free fall.

Choose the equation from those listed below which will permit you to find the time of fall directly from the data given.
(23)

A $t=\frac{d}{v}$
B $t=\frac{2 g}{d}$
C $t=\frac{2 d}{g}$
D $t=\sqrt{\frac{2 d}{g}}$

YOUR ANSWER --- B

We showed that $W=k^{\prime \prime} F d$ 。

In this expression, the portion "Fd" is a produce. Since "per" signifies a ftaction bar, the unit for work could be a newion per meter only if the proportion involved a quorient. Since thera is no quotient expressed or implied, there can be no "per" in the unit.

Please return to page 35. The answer should be clear now.

YOUR ANSWER --- A

Despite the unfamiliarity of rhe unit used to express work in this answer, you chose it. You must have had a reason for doing so. Going back to the definition for power:

$$
P=W / t
$$

and since we want the work done, we can solve the equarion for W :

$$
W=P t
$$

The power is 500 watts and the time is 1 minute, so

$$
W=500 \mathrm{w} \times I \min =500 \text { watt-min }
$$

But this isn't the answer you selected, is it?. What's wrong? Compare with the answer above, as you selected it.

Go back to the original question on page 121 and work the problem again.

```
: 54
```

YOUR ANSWER --- A

You are perfectly correct.

The kinetic energy of the block as is xexurns to the ground is:

$$
K \circ E_{n}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \times 5.00 \mathrm{~kg} \times 58.8 \mathrm{~m}^{2} / \mathrm{sec}^{2}=44 \mathrm{j} \text { joules }
$$

The kineric energy of the faling biock when it reaches ground feve is exactiy the same as the work originaily pur inco the job of ansing rie bigik From rhis we must conciude rhar 147 joutes were stored in the block while it rested on the sheir, and that all this energy was conveited to K.E. at the end of ins fall.

$$
\frac{\text { NOTEBOOK }}{\text { Lesson }} \text { ENTRY }
$$

$\hat{\theta}$ Potential Energy
(a) Potential energy is the energy possessed by a body because of iss position or distorcion.
(b) Under ideal conditions, P, E is equal to the work required to bilng the body to that position, or to cause the distortion.
(c) For pocential energy of raised position (against gravity), the work done to bring it to that position is $W=F d$. But the force in this case is the same as the weight w of the body, and the distance xaised is to be called the height h. Hence, we may express F. E of position as PoE. $=$ wh
(d) in the MKS system, wis in newtons, h is in meters, and P_{n} E, therefore, is in joules.

Please turn to page 184 in the blue appendix.

In the notebook entry, we mentioned the potential energy of distortion. Let's explore the matter further.

A body can store up potential energy if it is raised to some height above the ground. We say the body has porential energy because, if its support is removed, it wili fall and convert all the PoE it had while at rest to $K . E$. as in feaches the ground. For bodies that have potential energy as a result of rheir position, we shall call ground level zero height.

The most common way to tell if an object has porential energy is to note whether or not this object will have kinetic energy when released.

Referring to Figure 8, we see an unstretched spring in A (ignore gravitational effects), and the same spring in the stretched state in B, To stretch it, an average force of 2.5 nt was applied, causing the spring so lengthen by 0.20 meters. The spring has been distorted; its form in B is different from its form in its relaxed state in A_{0}. If the spring is released, that is, if the force is removed, the end of it will leap back coward the leit causing the mass of its curns to move. We conclude, then, that the stretched spring possessed potential energy which is converied to kinetic energy when the end is released.

How much $P_{0} E_{0}$ did che spring possess in its stretched state? Write your answer; chen turn to page 1 ili.

YOUR ANSWER --- B

You are correct. This answer is based on plain logic. If the engine can raise a crate 10 fit with 0.01 gal of gasoline, then it is reasonable to expect it would use twice as much gasoline to raise the crate twice the distance. Similarly, if the same engine were called upon to lift the same crate through 100 ft , we would expect that the gasoline consumed would be $100 / 10 \times 0.0: \mathrm{gal}$ or 0.1 gai .

Again relating the work done to the fuel used, we see that the engine must do twice as much wozk to zaise a crate through iwice the distance, three cimes as much work for thyee times the distance, and ten times as much work foz ten times the distance.

What relationship does rhis suggesr?
(3)

A Work is equal to the distance moved.
B Work is directly proportional to the distance.
C As the distance is increased, the work done increases.

YOUR ANSWER --- D

This is not the right answer. One of the answers is correct.

A watt is the same as a jovic per second. And a joule is a unis of work. What kind of a unit, then, does the jowle pex second measuxe?

Piease duturit \quad page 27 and make arother chole

CORRECT ANSWER: When $t=1.00 \mathrm{sec}$, the body falls 4.90 meters.

That is:

$$
\mathrm{d}=\frac{\mathrm{gt}^{2}}{2}=\frac{9.80 \mathrm{~m} / \mathrm{sec}^{2} \mathrm{x}(1.00 \mathrm{sec})^{2}}{2}=4.90 \mathrm{~m}
$$

The original height of the ball. was 44.1 meters, so the new height at the end of 1.00 sec is:

$$
44.1 \mathrm{~m}-4.90 \mathrm{~m}=39.2 \mathrm{~m}
$$

Thus, we have $1.00-\mathrm{kg}$ ball (weight $\pm 9.80 \mathrm{nt}$) at a height above ground of 39.2 m 。

What is the potential energy of the ball in this position with reference to ground? Write out the solution and the answer; then turn to page 144 to check your work.

YOUR ANSWER --- C

You are correct. The units of work are given as the newton-meter or joule.

In the discussion just completed, we have established a very useful basic concept: The conservation of energy in ideal situations. Next, we shall apply this concept to the analysis of the motion of a simple pendulum.
whimen
For this application please turn to page 60.

Figure 9

When a ball (called a pendulum bob) is hang from a suppost by neans of s stifing, ir hangs straight down forming what is known as alumb ine. The center of gravity of the bob may be assumed to be at rhe geometric centez of the sphere. In position (1), Figure 9A, the cencer or graviry ot the bob is taken as zero reference level from which all heights of depthe are measured. The bob has a mass m.

When a force is exerted sidewise on the bob, it can be displated "o position 2, as in Figure 9B, with the string stili raut. Since the hoxizoniai component of gravity is negligible for small displacements of the beb, we assume the work required to move the bob horizontally is zero. But work is involved in moving the bob to position 2 , because it has been raiseü wertically through distance h. How much work was done in moving in iromi (L) to (2)? Remember, $w=m \times g$ 。
(29)

A The work done was equal to $m \times h$.
B The work done was equal to $m \times g \times h$.

YOUR ANSWER -..- C

You took the right road but stumbled over a detail.
The equation for kinetic energy is $\frac{3}{2 m v}^{2}$ not just mv ${ }^{2}$ 。

This should give you a hint to enable you to locate your mistake. Do so, then return to page 123 and select the right response.

You are correct. The force that infes the mass 1 s the vexricat onponent of whatever force is applied to do the job. But the vexinal component of this force must be equal to the weight of the bob, exesved in an upward direction Then, since $w=m g$, the work done is equivaient me mgh.

Now picrure the bob held in posirion (2) of Figure 9 on page 60 ir is morioniess, hence its kinetic eneagy is zero. Inue, ajl the widk dire of the bob, represencing the scrai energy of the system, now resides in if in :he ticm of porential energy. We can express it rhis way:

$$
W=\text { toral energy } \Rightarrow K_{0} E+P, E \circ=0 \text { y } F E=\text { toes } P E
$$

Ii the ball is now released, it will gather speed as it roves to the left. It will then pass through position (l) sore cime during this mo:im.

At the instant the ball passes through position (U), which of the following statements would corresty describe the energy distribution:
(30)

A The total energy of the bob comprises only K.E.
B The total energy of the bob comprises some K, E and some $F E$.
C The total energy of the bob compises only $P \cdot E$.

This page has been inserted to maintain continuity of text. It is not intended to convey lesson information.

This page nas been inserted to maintain continuiry of rext. is is not intended to convey lesson information.

YOUR ANSWER --- C

Although this statement is true, it is incemplete. The figures given should enable you to state a relationship that is more meaningful.

Certainly, the work increases as the distance increases. But is it true that the work triples as the distance doubles, or that the work rises to 100 times its former value if the distance is increased 10 times? Of course not! Yet in both these cases, the work increases as the distance increases.

So, you see that your answer is too qualitative; it does not contain all the information that can be derived from the discussion.

Therefore, please return to page 56 and find the answer that does have this information.

There is no such equation!

Although this expression does.relate time and distance--and this is the relationship you would need to determine the time of fall oi the ball over a distance of 44.1 meters-it does not relate them properly.

You may need to go back over the appropriate equations in you: notes and review them before you return to page 51 and select another answer

YOUR ANSWER --- C

If you have the right answer for the K.E. of the block as it returns to ground level, the appropriate conclusion ought to be apparent immediately. Perhaps you made an error in arithmetic. Once you ger the right resuit fox the $K_{,} E_{0}$, you should reach a conclusion that can be generalizede Let ${ }^{\dagger}$ review the points made thus far:
(i) 147 joules of work did the job of raising the $5.00-\mathrm{kg}$ block a distance of 3.00 meters.
(2) We decided that the K, E, of the block on the shelf was zero because it was not in moiion, and its velocity was zero.
(3) However, having done 147 joules of work on the block, we feit that we must have added energy to it. Since this energy is evidently not kinetic, then ic must be another kind of energy.
(4) We concluded, therefore, that the energy (147 joules) is stored because of the block's raised position. We called this potential energy.
(5) To test this theory, we computed its K.E. when the block fell to. its original position. Einally, we must compare this K.E. with the original work done in the P.E. "storage" process.

Please return to page 139 and select another answer.

YOUR ANSWER --- B

This expression is not valid. We have never derived noi used anything like $1 t$.

Although this expression does relate time and distanco-mand this is the relationship you need to determine the time of fall or the ball ove: a dassance of 44.1 meters-it does not relate them properly:

You may need to go back over the appropriate equations in your notee and review them. Then please return to page 5 l and select another answe:

YOUR ANSWER --- B

Not directly.

The equation $d=\frac{1}{2} a t^{2}$ gives the relationship between time, acceleration, and distance. It does not relate velocity to the other quantities.

Please return to page 124 and make a selection that fits the question.

YOUR ANSWER --- C

You've erred somewhere in your calcularion.

One of the answers is correct. Check your work; then please reran to page 143. You should be able to pick the right answer.

YOUR ANSWER --- B

You are absolutely correct. Since you know mass m and velociry v, you can make direct substitutions into the equation:

$$
K_{0} E_{0}=\frac{1}{2} m v^{2}
$$

Remember; we want to find the height from which the stone was dropped. Let's compute the kinetic energy at ground level:

$$
\begin{aligned}
& K_{0} E_{0}=\frac{\mathrm{mv}^{2}}{2}=\frac{20 \mathrm{~kg} \times(12 \mathrm{~m} / \mathrm{sec})^{2}}{2} \\
& \mathrm{~K}_{\circ} \mathrm{E}_{\circ}=1,440 \text { joules }
\end{aligned}
$$

Assuming ideal conditions, the potential energy of the stone at the height from which it fell must also be 1,440 joules, since all the P. E. was converted into $K . E$. by the time the stone reached the ground.

$$
P_{0} E_{0}=1,440 \text { joules }
$$

but P.E. $=$ wh, so

$$
\begin{aligned}
\text { wh } & =1,440 \text { joules } \\
\text { and } \quad h & =\frac{1,440 \text { joules }}{w}
\end{aligned}
$$

The mass of the stone is 20 kg . What is its weight? Write your answex.

Now turn to page 49.

CORRECT ANSWER: At the end of 1.00 sec of free fall, the speed of the ball is $9.80 \mathrm{~m} / \mathrm{sec}$. That is,

$$
v=g t=9.80 \mathrm{~m} / \mathrm{sec}^{2} \times 1.00 \mathrm{sec}=9.80 \mathrm{~m} / \mathrm{sec}
$$

We want to calculate the K.E. of the ball, then, when its speed is $9.80 \mathrm{~m} / \mathrm{sec}$. What do you get for the kinetic energy at this speed?
(26)

A 96.0 joules.
B. 48.0 joules.

C 4.9 joules.
D None of these answers.

YOUR ANSWER --- B

What's wrong with this answer? It is correct. From $W=k^{\prime \prime F d}$, we obtain $W=F d$ when we make $k^{\prime \prime}=1$ 。 Then substituting for F and d, we have:

$$
\begin{aligned}
& \mathrm{W}=3.6 \mathrm{nt} \times 0.70 \mathrm{~m} \\
& \mathrm{~W}=2.52 \mathrm{nt}-\mathrm{m}
\end{aligned}
$$

However, since a newton-meter is a joule, we can express this answer as $W=2.52$ joules. And since we are working with only two significant figures, the final result is best expressed as

$$
W=2.5 \text { joules. }
$$

One of the answer choices, however, is wrong on two counts. Please return to page 119 ; find the answer we mean.

YOUR ANSWER --I D

At the start of the free-fall process, the total energy of the ball was ali petential- -432 joules. If you say that on reaching the ground, the P.E. of the ball is still 432 j and its K .E. is also 432 j , how do you account iot the fact that the total energy of the ball would then be $432 \mathrm{j}+432 \mathrm{j}=864 \mathrm{j}$ The only work done on the ball was that involved in the raising process, 432 j . You know that work must be done to give something energy. You can'r add another 432 j to the energy without accounting for it.

Furthermore, you know that potential energy of position is the produ: of the weight and height. But, at ground level, the height of the bail above the ground is zero; hence its P。E。 $=2 \times 0=0$.

Please return to page 76 and select a better answer.

CORRECT ANSWER: Force F may be considered to be made up of a horizontal and a vertical component.

Figure 5
Figure 5 illustrates the resolution of force F into its two components, F_{H} and F_{V}. Ignoring F , now we can talk of the effects of the components. As we saw before, a vertical force that causes no vertical motion does absolutely no work. This means, of course; that F_{V} may be ignored, too, as long as we confine our discussion to the forces that do work in our example.

On the other hand, the horizontal component of $F\left(F_{H}\right)$ is the force which causes the actual, observed morion resulting in the displacement \dot{d}. Thus, only F_{H} does work along the horizontal line as the block moves over the distance d .

Now, you should be able to write the equation for the work done in the situation shown in Figure 5. Which of the following correctly describes it?
$\mathrm{A} W=\mathrm{Fd}$
B $\quad W=F_{V} d$
C $W=F_{H}{ }^{d}$
D $W=F_{H} F_{V}^{d}$

CORRECT ANSWER: Ac $t=0$ sec, before the ball starts to fall, its energy is entirely potential.

The body is not in motion, so it has zero kinetic energy. To find its toral energy then at $t=0 \mathrm{sec}$, we must derermine its porential enexgy.

$$
P_{\circ} E_{0}=w h
$$

but since $w=m g$
then P.E. $=m g h$
and substituting, we can write:

$$
\begin{aligned}
& P_{0} E=1.00 \mathrm{~kg} \times 9.80 \mathrm{~m} / \mathrm{sec}^{2} \times 440 \mathrm{~m} \\
& \text { PE }=432 \text { joules }
\end{aligned}
$$

Thus, in answering (1) or part (a) of the problem we would say that:
the ball's P.E. at $t=0$ is 432 joules the ball's K.F. at $t=0$ is zero.

Now, without further calculation you should be able to tell us the piE and $K_{0} E_{0}$ of the ball at $t=3.00$ sec. Remember that we calculated the time required for the bail to come to ground level as $3.00 \mathrm{sec} . \boldsymbol{y}$

Don't hurry, Take the time you need to think this out. Then selest an answer from those listed below:

At $t=3.00 \mathrm{sec}$, the ball has a
(24)

A P.E. of zero and K.E. of 432 j.

B P.E. of zero and K.E. of 288 j .
C PoE. of 216 j and $\mathrm{K}_{\mathrm{E}} \mathrm{E}$ of 216 j 。
D P.E. of 432 J and $K_{0} E_{\text {。 of }} 432 \mathrm{~J}$.

YOUR ANSWER --- A

Incorrect:

We know the mass of the ball. It is a constant value of 1.00 kg and is not affected by the motion of the ball in free fall.

Piease return to page 144 and choose the alternarive answer.

YOUR ANSWER --- A

The product $m \times h$ is a product of a mass and a distance.
You know that work is a product of a force and a distance. Then the product $m \times r$ can not express work.

Please return to page 60 and select the other answer

YOUR ANSWER --- C

We'il refresh your memory.

Let.'s go back to Newton's Second Law. Your notes will show that we had a similar proportion involving force, mass, and acceleration which could be put into the form $F=k^{\prime \prime} \mathrm{ma}$.

In deciding upon the unit to be used for force F, we allowed the $\mathrm{k}^{\prime \prime}$ to be dimensionless with a value of unity and then wrote:

Then we said that the unit for force must be the kllogram-meter per second squared, or $\mathrm{kg}-\mathrm{m} / \mathrm{sec}^{2}$.

Thus, in forming the unit for the derived quantity (force in the case of the Second Law), we merely perform the operations dictated by the defining equation, multiplying or dividing or both, depending on the instructions in the equation.

In this case, $\sec ^{2}$ appears' in the denominator of the force unit because it is in the denominator of the unit for acceleration.

Perform exactly the same operation with the expression:

$$
\mathrm{W}=\mathrm{k}^{\prime \prime} \mathrm{Fd}
$$

Now return to the original question on page 35 and select the right answer.

YOUR ANSTNER --- A

Correct.

When it is at position (1) ur Figure 9 on page 60 , whether it is in motion or not, the height of the bob is considered to be zero since rhis is the zero reference level. Since mgl: newtons of work were done on the bob to radse it to height h, it must have been given mgh newtons of total energy At position (l), we see that its P.E. is zero; hence the tocal energy must be all K.E., by the Principle of Conservation of Energy. If the bob is moving with speed v at position (2), then the total energy of the system is

$$
\text { Total Energy }=K_{0} E_{0}+P_{0} E_{0}=K_{0} E_{0}+0=\frac{1}{2} m v^{2}
$$

Now turn to page 81.

Now refer to Figure 10.

The bob passes through (1) and, because it has kinetic energy, it continues to move toward the left, rising to height h ' at position (3). Here it stops moving, before reversing direction on its next swing, At position (3), the bob again has zero $\mathrm{K}_{\mathrm{o}} \mathrm{E}_{0}$, and the total energy of the system is 'all P.E. In this case, the $\mathrm{P}_{\mathrm{o}} \mathrm{E}=\mathrm{m}$. mh'。 Select the only true statement.
(31)

A The magnitude of mgh' is exactly the same as mgh.
B The magnitude of mgh^{\prime} is smalier than that of mgh .
C The magnitude of mgh^{\prime}. is greater than that of mgh .

YOUR ANSWER --- A

You are quite correct.

So far we have:

$$
\begin{array}{ll}
& W=\operatorname{mad} \\
\text { and also } \\
& v^{2}=2 \mathrm{ad}
\end{array}
$$

Suppose we solve this last equarion for a . This gives us:

$$
a=\frac{v^{2}}{2 d}
$$

Thus, $v^{2} / 2 d$ is the equivalent of a and may be substituted for it in the expression $W=$ mad.

We would like to make the substitution and then simplify the resulting expression as much as possible. Write your answer, then see which of the following is a true statement.

A $W=\frac{m v^{2}}{2 d}$
B $W=m v^{2}$
C Neither of these answers is right.

We should like re ciose enis lesson by aescribing a simple experiment In whith the conservaiton pitnciples. tor both momentum arid eneigy, helo us to appreciste rhe impo..tante ot ememberang which quancity is a uector and which a scaiai.

Figuxe : :
In Figure Li, we see a billiard table fuom above. Two billiard balis of equal mass mare moving with equal unitorm velccimies in opposite dixectione

Bearing in mind that energy is a scalar quanticy, we aye not concerned with the directions of the two morions in arswering the ques:ion: What is the total kinetic energy of che system: The system includes both bails and the tabie. Clearly, if direorions are not to be taken into account, when the rotal kinetic energy of the system is the sum of the two indiviauai enezgies. ox

$$
\text { Total } K_{0} E_{0}=\frac{1}{2} \pi v^{2}+\frac{12 n v^{2}}{2}=\mathrm{mv}^{2}
$$

If each $m=0.20 \mathrm{~kg}$ and each $\mathrm{v}=10 \mathrm{~m} / \mathrm{sec}$, then the rocal kinetic energy is 20 joules. Despite the fact that che bails roll in opposite directions, each one could do 10 joules of work if called upon to do so.

YOUR ANSWER --- C

This is nor true. You do have enough data to answer chis question.

To determine the kinetic energy of any body, what do you have to knowi Since $K . E=\frac{1}{2} m v^{2}$ you need informacion relative to the mass af the body and its velocity at the time the kinetic energy is to be calculated. Weil, aren't both of these known? Sure, they are! So you do have encugh data to find the K. E. of the block atter ir zomes ro rest on the sheli.

Please return to page 150 and selecs an answer thaz matches che information you have.

YOUR ANSWER --- A

No:

Cherk your notes for the coz ect equation, aithocigh rhis should no longe: be necessary. Important reiationships should become part of your physics "vocabulary" as quickly as possible.

Please reruyn to page 32 , Check yowi nozes before chonsing you: nexs answer.

YOUR ANSWER --- C

You are correct. The work in this case is the product of the horizontai component F_{H} and the displacement d .

Let us now state a firm and rigorous definition of work as a norebook entry.

$$
\frac{\text { NOTEBOOK ENTRY }}{\text { Lesson } 12}
$$

Work and Kinetic Energy

1. Definition of Work
(a) Work is defined as the product of the component of force along the direction of motion and the distance moved as a result of the action of this component.
(b) The equation for work may be writcen: $W=F d$ where F is the component of the force in the direction of motion and dis the displasement or distance moved.
(c) Work is measured in newton-meters ur jouies in the MKS system
(d) IXlustrative example: A force of 18 mt acts al an angie θ on block of wood on a table. The angle is such that the force may be resolved into a horizontal component of 16 nt and a vertical component of 9 nt. lit the block moves 4 m along the horizontal table, how much work was done? Solution: Only the horizontal component of the applied force is involved in the work; hence $W=F d=16 \mathrm{nc} \times 4 \mathrm{~m}=64 \mathrm{mr}-\mathrm{m}=$ 64 joules.

Please tura to page 182 in the biue appendix.

Here's another simple problem, involving the principles of work: A word of caution is in order here, Watch the units very carefully. They Cai always be combined by performing the operations dictated by the defining equation.

A boy weighing 120 lb climbs a verticai ladder 13 ft high. How much work does he do?
(8)

A He does no work.
B 1,600 joules
C 1,600 nt-mt
D 1,600 ft-1bs

YOUR ANSWER --- A

You are corcect. The kilcwarthour ($k w-h z$; has exacicy yhe same tosm as the wart-scsond (w-sec) fe is a piodecz of power and time c:

 tyye of compuration: For example, in the p:obiem besow, how do we ger sjeed inco the picture?

 C 2.5 \% . $0^{2} \mathrm{~kg}$,
 ct the itght side of the power equetion. That is, when we witice Fa, we mean that an unbalanced force F has aused a displacement ot a body in the dixection that the force ects Normaliy, we wouio inaicare a dispiecement as Ad since it does involve a change of posirion. if we de that, then the powe: equation becomes:

$$
p=\frac{F \Delta d}{\Delta r}
$$

which can be rewirtyen this way:

$$
F=F \times \frac{\Delta \dot{d}}{\Delta t}
$$

In this equation, with what cotid you zepiace $\frac{\Delta 0^{4}}{\Delta t}$, 897

A Neither of these answers is cotace:

B Acceleration of the body on whath the ruxce acts.
C Spead of the body on which the foree acte

CORRECT SOLUTION:

```
Given: \(P=10.0 \mathrm{kw}=10^{4}\) wat: \(s=10^{4} \mathrm{j} / \mathrm{sec}\)
    \(m=2.15 \times 10^{4} \mathrm{~kg}\)
Since \(w=m g\), then \(w=2.75 \times 10^{4} \mathrm{~kg} x 9.8 \mathrm{~m} / \mathrm{sec}_{5}^{2}\)
    \(\mathrm{w}=27.0 \mathrm{x} .10^{4} \mathrm{nt}=2.70 \times 10^{5} \mathrm{nt}\)
```

So $F=2.70 \times 10^{5} \mathrm{n}$
$\mathrm{P}=\mathrm{Fv}$, herice $\mathrm{v}=\mathrm{P} / \mathrm{F}$

Therefore:

$$
\mathrm{v}=\frac{10^{4} \mathrm{j} j \mathrm{sec}}{2.70 \times 10} \frac{\mathrm{nc}}{\mathrm{nc}}
$$

Now, dividing $j / s e c$ by nt gives us m:/ser, because

$$
\frac{\frac{j}{\sec }}{n t}=\frac{\frac{n t-m}{s e c}}{n t} \Rightarrow \frac{m}{\sec } \text { Thus } v=0.037 \mathrm{~m} / \mathrm{sec} .
$$

To obtain the answer in meters per minute, we multiply by $60 \mathrm{sec} / \mathrm{min}$ and get:

NOTEBOOK ENTRY
 Lesson 12

(Item 5)
(h) Power and speed are related by the expression: $P=F$ where $P=$ power in watts or $j / s e c, F=$ unbalanced force in newtons, and v $=$ speed in meters per second.
(i) Copy the problem fust coupleted as a sample for this entry.

Please go on to page 90.

Did you find the right answer for the last problem? If not, be more careful with this next one.

Energy :s expended at the rate of 5.0×10^{3} joulejsecond in causing a $3.2 \times 10^{3} \mathrm{~kg}$ block to move horizontally against friction on the floor at $2.0 \mathrm{~m} / \mathrm{sec}$. Find the retarding force of friction.

Write out your solution carefully; then turn to page 125.
initial velocity $=0$
If work is a measure of energy transferred, then we should be able to determine the energy of the moving block by calculating the work (assuming that ali the work done appears in the form of energy of motion.)

Obviously, the work done may be obrained $f x o m W=F d$, since the force is constant and in the direction of the motion. So $W=F d$.

We should now like to find an expression for the energy in terms of the morion of the body. For claricy, consider this situation: if the mass m were to come sliding rast you at a velocity v (as in Figure 6 on page 117), you could be sure that work had been done on the body during some past interval in order to overcome it:s inertia and accelerate it from rest to the velocity ' \boldsymbol{y}, Eyen though you had absolutely no information concerning the force that was used, or the distance over which che force actet. In other words, the energy of the mass m moving with velocicy v should be calculabis simply from a knowledge of the magritude of m and v withour reference to rhe original force F or distance d. To do chis, we must convert $W=F d$ into another equation containing m and v, rathez than F and d as a staic., we could replace F with its equivalent using Newton's Second Law of Motion. What could replace F?

A $\frac{a}{m}$
B $\frac{\mathrm{m}}{\mathrm{a}}$
C ma

This page has been inserted to maintain continuity of text. it is not intended to convey lesson information.

This page has been inserted to maintain continuity of text. It is not 1 ritended to convey lesscri information.

This page has been inserted to maintain continuity of text. it is not intended to convey lesson information.

```
YOUR ANSWER --- B
```

This answer neglects the difference between weight and mass.

Work is a force in the direction of motion times the distance moved. If work is a product of force and distance, then it cannot be a product of mass and distance. Force is measured in newtons. You multiplied the mass of the block (5.00 kg) by the distance vertically (3.00 m) and obtained an answer of 15.0 joules.

To find the work in chis case, you must multiply the necessary fo:ce to lift the block by the distance.

Please think it over. Then return to page 170 and make a better selection.

VOUR ANSWER --.. D

A newton is a unit of force, not work! If the watt-second is ieaily a work unit it cannot be the same as a force unit, can it?

If you will remember that a watt and a joule per second are iâmilai units, you should have no difficulty in choosing the right answe:.

Piease return to page 140 and make another selection.

YOUR ANSWER --- C

Nol directly.

The equation $v=$ at gives the relationship between final velocicy, acceleration, and time. It does not relate distance to the other quantities.

Please return to page 124. Make the selection that meets the requirements of the question.

YOUR $P^{\text {N }}$ SWER --- B

The wart is not a unit of energy.

A watt is a joule per second; a joule is a unit of work and we have seen that work and energy are measured in the same units; hence, the joule is also a unit of energy. Then, a joule per second, and rherefore a watt, must be a unit for measuring the time rate of energy usage, not energy
itself.

Please return to page 27 and select another answer.

YOUR ANSWER --- C

You axe quite correct. There are two errars in this answer. Most important is the unit error: The product of force and distance cannot be expressed as newcons per meter as we have explained before. The correct unit is the $n t-m_{s}$ or the joule. Also, since the problem is given to two significant figures, the answer should not have three significant figures.

Figure 3
You may have noted that Figure 3 has the addition of two forces besides the unbalanced horizontal fotce of 3.6 nt . This is a real block and it has a definite amount of weight, W. But, since it doesn't fall through the table, it is held in static equilibrium by the seaction force exerted upward by the table, F_{T}. We might say that the block is acted on by 2 forces, F and F_{T}, while it ants upon the table with the force W, its own weight.

Now, here's oir question. F aces on the block and does work to the extent of 2.5 joules. F_{T} also acts on the block. How much work does it do?
(6)

A The same as F, that is, 2.5 joules.
B No work at all.
C I don't know.

YOUR ANSWER --- D

No. This is defined in item 2(a).
You have the wrong item. If you're going to make progrese, you have to keep your notes neat and in order.

Please return to page 138 and choose again.

YOUR ANSWER --- B

No, that's ircorrect.

You forgot that, in kinetic energy, we are dealing with the square of the speed.

Work the problem once more, then return to page 137 please, and choose an answer that conforms wich your revised work.

YOUR ANSWER -=- C

The prefix "kilo" means ' . 000 times," Thus, a kilowart is the same as 1,000 watts. When we write ${ }^{1 . s}$ lowatt-hour, we state that we are multiplying power times time.
"Power per unit time," however, states that power is being divided by time. Some orher familiar examples of this are:

```
acceleration = change of veiocity per unit time = v/ r
```

and

```
density = mass per unir voiume = m/v
```

Note the division sign in each of these examples, representing the word "per."

Hence, the kilowatt-hour (kw-hr) cannot be defined as power per unit time since it is a product, not a quotient.

Please return to page 145. Choose the right answer this time.

YOUR ANSWER --- D

Oh, come now!

We haven't work with English units in any of our lessons. Why should we turn to them now?

Please return to page 128. Stay in the preferred metric system.

YOUR ANSWER --- D

Work is the product of a force and a distance. This answer shows two forces and a distance in the product. This could hardly fit the definition of work, ould it? How much does the component of force at right angles to the direction of motion contribute to the work expended?

Please return to page 75 ; then pick a better answer.

YOUR ANSWER --- B

No.

Acceleration is defined as the rate of change of velocity with respect to time, or $a=\Delta v / \Delta t$.

Here we are dealing with a rate of change of displacement with respect to time. This is not acceleration.

Please return to page 88 and make a better answer choice.

```
YOUR ANSWER --- B
```

Ne're not planning to push the block down; we're just going to let it. fall by pulling the shelf out of way;

In that case its inftial velocity would be zero, wouldn't it? There's nothing to determine in this respect then.

Please return to page 157. Yru should be able to choose the right answer:

YOUR ANSWER --- A

You omitted one step in the solution of $K_{0} E .=\frac{1}{2} \mathrm{mv}^{2}$. Which step is it?

Correct your work, return to page 72 , and then select the right answer

YOUR ANSWER --- A

We disagree.

So far, our definition of work states that $\bar{W}=F d$, since the proportionality constant has dropped out. Substituting in this simple equation:

$$
\begin{aligned}
& \mathrm{W}=\mathrm{Fd} \\
& \mathrm{~W}=3.6 \mathrm{nt} \times 0.70 \mathrm{~m} \\
& \mathrm{~W}=2.52 \mathrm{nt}-\mathrm{m}
\end{aligned}
$$

And since we are working to two significant figures, the answer should be given as $W=2.5 \mathrm{nt}-\mathrm{m}$ 。

There is one answer, however, that is definitely incorrect on two counts. Return to page 119, find this answer, and indicate your selection by picking the associated letter choice.

YOUR ANSWER --- B

This choice of answer indicates that you must have obtained an incorrect xesult toz your caleulation.

Perhaps the error was one of arixhmetic. Before going thxough the work again, let's brietily check the points made thus fax.
(i) We have shown that 14 joules of work were done in raising the $5,00-\mathrm{kg}$ block chrough a distance of 3.00 meters.
(2) We decicied that she block could not have any kinetic energy aftex coming to res: on the ahell, simply because it was not in motion and its velociry was zero.
(3) But, hawing done 14 ; joules of work on the block, we felt that we must have added energy to it. If this added energy is not K.E., then it must take some orher form.
(4) We ther aaid that the energy was stored in the block in the form of so-calied pocentici enezgy.
(5) Tc sest this theory, we then computed its $\mathrm{K} . \mathrm{E}$. when the biock fell co its oaigunai position. Finally, we shall want to compare rhis K.E. with the originel work done in the P.E. "scozage" process.

Please yeturn to page 139 and select another answer.

YOUR ANSWER -.-- A

This expression is applicable only to motion with uniform velocity. It may not be applied to unfformly accelerated motion, such as that of a ball in free fall.

You are looking for an equation which relates time and distance, since you know the distance of fall and want to find the time required.

If necessary, review the appropriate equations in your notebook. Then return to page 51 and make another choice.

YOUR ANSWER --- A

You apparently missed the point. Observe in Figure 5 on page 75 that the force F acts at an angle to the horizontal plane (θ), but that the block moves along the horizontal line in covering the distance d. Our latest tentative definition of work requires that, if work is to be done, the motion must be in the direcrion of the force. Since the motion and the force are not in the same dixection, then the work cannot be the product of F and d.

Read over the text again, particulariy the part about the resolution of F. Then select your answer carefuily.

Please return to page 75 and try again。

YOUR ANSWER --- B

Let's analyze your answer carefully. If the magnitude of mgh' was actually smaller than that of mgh, this would mean that the potential energy at (3) of Figure 10 on page $8 i$ was less than the potential energy at (2). Now, at both positions, the kinetic energy is zexo; hence the P.E is the rotal energy of the system.

Do you see the implication? When you select this answer, you are saying that some energy vanished altogether in the transition of the first swing of the pendulum. Working under ideal condicions as we are, this is quite impossible according to the Principle of Conservation of Eneigy. Ail the P.E. of the raised bob in position (2) must have become transformed into K.E. in position (1) which, in turn, reverted to PoE. when rhe bob reached position (3) 。

So--how could the P.E. in position (3) be smalier than that of position (2)?

Please return to page 81. You should be able to seifct the ilght answer without difficulty now.

YOUR ANSWER --- D

This is not true.

One of the given answers is quite correct. The thing to do is to let kinetic energy equail the work performed.

Try again。

Please return to page 123.

CORRECT ANSWER: The potential energy of the sping was 0.501 .

This answer results from rhese considerations:
(1) The work done on the spring in stretching it 0.20 m is $\mathrm{W}=\mathrm{Fd}=2,5 \mathrm{nt} \times 0.20 \mathrm{~m}=0.50$ joules
(2) Under ideal conditions, the porencial energy is equal to the work done in causing the discortion. Hence, $\mathrm{P}_{\mathrm{E}} \mathrm{E}=0.50 \mathrm{j}$.

When the spring is released, its kinetic enexgy as the loop at its end passes the original rest position is aisc 0.50 jouies, since ail the P.E: ofiginally stored in it has been convexted to K . E, at this point.

The expiosive charge propeliing a builet has chemical potencial energy which, for simplicity, may be viewed as energy stored in the "distortion" of the molecular structure ot the powder.

Suppose a 4.0 -gm bullet is given a muzzle velocity of $700 \mathrm{~m} / \mathrm{sec}$ by irs charge. Can we find the potentia? energy of the powder using only this data? Yes, we can.

Find the kinetic energy of the builet as it jeaves the gun, then convert this to the potential energy of the chatige propelling the pellet.

What's the answer?
(21)

A 1,960 joules.
B 1,400 joules.
C 980 joules.
D None of these answers is right.

YOUR ANSWER --- B

Do you recall that we emphasized the level of position (!) of Figure 9 on page 60 as the zero reference level? Then, when the bob passes through (1), ics height is zero. Therefore, with reference to this arbitxarily chosen zero heaght, the potentiai energy of the bob must also be zero since

$$
\begin{aligned}
& \text { P.E. } \approx m g h \\
& \text { P.E. } m x g x 0=0
\end{aligned}
$$

On this basis, your answer cannot be correct.

Pease xeturn to page 62 and choose che correct answer.

YOUR ANSWER --- B

You are correct. The weight of the safe does not enter into the solution of this problem.

The horizontal force is 450 nt and the horizontal displacement is $? \mathrm{~m}$; hence from $\mathrm{W}=\mathrm{Fd}$ we have:

```
W=450 nt x 25 m = 11,250 joules, or to two significant tigures,
W = 11,000 joules.
```

Our definition of work as the force in the direction of motion times the distance moved was developed to agree with the idea that equal amounts of fuel will supply equal amounts of energy. Will this definition provide us with information about the energy possessed by a moving body? If it cannot do so, it has little value as a definition.

To continue, please turn to page 11%.

Figure 6
In Figure 6, a constant force F is applied to a mass m on a frictionless table. The mass accelerates as a result of the force, takes on new velocity, and travels the distance d while the force is acting.

Work was done by the force F on the mass m according to our definition. This work is the measure of the energy transferred to tne mass m according to cur definition. Now we should like to find an expression for the energy in terms of the motion of the body.

As the diagram shows, the mass starts with an initial velocity equal to and accelerates to a velocity y_{0}. Write the missing word, then turn to page 9:。

YOUR ANSWER -..- C

Any or all of the listed characteristics could be found from this data. However, we asked for the one that could be found most conveniently. By this we mean, which relationship--the equation for finding work, K, E. or P.E.--can use these data as direct substitutions?

You answered potential energy. But to find P.E., you must know the weight of the stone and the height to which it was raised. Neither of these quancities is given in the data, hence it is not convenient to find P.E. first.

Please return to page 171; then pick a better response.

YOUR ANSVER --- A

You are corce:t.

$$
\begin{aligned}
& W=k^{\prime N d} \\
& W=(\dot{W} \times n t \times m \\
& W=n t-m \cdot
\end{aligned}
$$

You will remember chat we gomeximes give another name to a dexived unit to reduce tis awkwardness. We did rhis with the unit of force, the $\mathrm{kg}-\mathrm{m} / \mathrm{sec}^{2}$ by cailing it one newton.

The same thing is done with the unit for work, the newon-meter. It is called s joule aiter James Prescote joule, the Engilish scientist who contributed much of mechanics to physics. (For the pronunciation of the jouile: Theze are pzobably as many auchorities who proncunce it "jewel," as there are who say "jow.", so remember: 1 joule $=1$ newton-meter.

Before continuing, please turn to page 181 in the blue appendix.

Figure 2
Suppose, as in Figure 2, a force of 3.6 newtons is applied horizontaliy to move the block a distance of 0.70 meters. Energy is required to over come the fricrion between the block and the table upon which it rests. Which answer below does NOT properly express the work done?
(5)

A $2.5 \mathrm{nt}-\mathrm{m}$ 。
B 2.5 joules.
C $2.52 \mathrm{nt} / \mathrm{m}$ 。

[^0]You are correct. At ground lejel, or referen se zero level, the height of the ball is zero so that its potential energy is zero, too. All of the P.E., however, is tranformed into $\mathrm{K}_{\mathrm{n}} \mathrm{E}$. ar the time or impact

Getting back to our problem, we have seen that at $t=0$, the P. E. $=$ 432 j and the $\mathrm{K}_{\mathrm{E}} \mathrm{E}_{\mathrm{o}}=0$; that at $\mathrm{t}=3.00 \mathrm{sec}$, the P . $\mathrm{E}=\mathrm{z}=$ zero and whe K.E $=432 \mathrm{j}$. Our next task is to find the distiobution or ene:gy io: $=1.00$ sec.

We'11 do this in several steps, and ar the same vime, stiese a veiy important idea。 Let's start by finding the $F \cdot E$ oi whe bail ar $t .00$ sed.

The ball starts to fall trom a height of $4 \mathrm{~m}_{\mathrm{i}} 1 \mathrm{~m}$. Fixst iet's aetermine how far it fell during that first second and then, by subtacting this figure from the original height of 44.1 m , we can find its height above ground at the end of 1.00 sec . From this, the P。E. follows easily. Thus:

$$
d=\frac{3}{2} \pi t^{2}
$$

(This is the equation for distance in iree Lili wheqe $\alpha=\hat{g}=9.80 \mathrm{~m}, \mathrm{sec}^{2}$, and $t=1.00 \mathrm{sec}$.)

$$
\text { so } d=\%
$$

Work this out to chree significant ifigures; write your answex, then turn to page 58 to verify the result.

YOUR ANSWER --- C

Correct: The watt is the same as a joule per second. A joule is a unit of work (c. energy); hence the joule per second is a measure of the time rate of doing work or expending energy which, of course, is the same as power.

NOTEBOOK ENTRY
 Lesson 2

(Item 5;
(e) One jouile $=0.738 \mathrm{fr}-\mathrm{ib}$. Thus, the joule is smallet than the.fcor-. pound. Roughiy, i joule is $3 / 4$ of a ft-ib.
(5) One hotsepower (HP) is aerined as $550 \mathrm{ft}-1 \mathrm{~b} / \mathrm{sec}$.
(g) $1 \mathrm{HP}=550 \mathrm{fr}-\mathrm{Lb} / \mathrm{sec}=746 \mathrm{j} / \mathrm{sec}=746 \mathrm{watts}$.

We promiseo thet there would be no problems using English units, but we should solve a 1 ew samples in the MKS system. We'll run through a simple one first.

An electric motoz which runs a drill piess consumes 500 wates of electrical power. Assuming that all the electricity.used is converted into useful mechanical work, how much work does a drill press do each minute that it turns?
(35)

A 500 watt-sec.
B 500 joules.
C Netther of these.

YOUR ANSWER --- C

You are absolutely correct. Both answers are wrong. Here is the right solution:

$$
\begin{aligned}
\mathrm{m} & =2.0 \mathrm{gm}=2.0 \times 10^{-3} \mathrm{~kg} \\
\mathrm{v} & =6.0 \mathrm{~cm} / \mathrm{sec}=6.0 \times 10^{-2} \mathrm{~m} / \mathrm{sec} \\
\mathrm{~K}_{\mathrm{E}} \mathrm{E} \cdot & =\frac{2.0 \times 10^{-3} \mathrm{~kg} \times\left(6.0 \times 10^{-2} \mathrm{~m} / \mathrm{sec}\right)^{2}}{2} \\
\mathrm{~K}_{\cdot} E_{\cdot} & =36 \times 10^{-7} \mathrm{j}=3.6 \times 10^{-6} \mathrm{j}
\end{aligned}
$$

We have seen that work ($W=F d$) is used as a meas $1, r e$ of the amount of kinetic energy given to a body. Throughout our discussion thus far, we have implied that all of the work done on a body is used for the sole purpose of giving kinetic energy to it. In other words, we assume ideal conditions in which there are no friction forces of any kind to force us to do work to overcome them. Later we shall study the effect of friction, but for the present, let us continue our analysis on the basis of ideal conditions.

Please turn to page 123.

Let's emphaesze again that under ideal conditions the kineric energy acquixed by a mass js exactiy eqval to the work done upon that mass in transiezrang enegy "o it. As an illustration of this, how would you answer the foilowing ques:ion:

A boy pushes horizontally on a $72-\mathrm{kg}$ fifctionless cart wich a constant force of 64 nt until in attains a speed of $4,0 \mathrm{~m} / \mathrm{sec}$. Over what distance did this constant roves have to act on the cart?
(5)

A 2.25 m .

B 9.0 m .
C 18.0 m 。
D None of these $1 s$ sorrect.

Certainly it can! In Figure 6 on page 117, the constant force F causes the mass m to accelerate at a rate a; hence the Second Law is applicable, and we may say that $F=$ ma. Thus, in: $W=F d$, we may replace the F with ma and obtain: $W=$ mad.

Now let us procied further. In the lesson on uniformiy accelerated motion, we derived an expression which relates the final velocity of a body starting from rest to its acceleration and the distance it travels. To refresh your memory you may go back to the notes on Lesson 6 (Item 3).

Choose from the list below the equation which gives the relationahip between final velocity, acceleration and distance.
(11)

A $v^{2}=2 a d$
B $d=\frac{1}{2} a t^{2}$
C $v=a t$

CORRLCT SOLITTION:

$$
\begin{aligned}
& P=50 \% 10^{3}, j \sec \text { These facts are grveri. But note that the } \\
& m=3.2 \% \text { 解 } \mathrm{kg} \text { mass oi the biock does not enter into rhe } \\
& y=2.0 \mathrm{misec} \\
& \text { calculations. First, we find the unbalanced } \\
& \text { forge spplied to the block thus: } \\
& \begin{array}{l}
P=F w \\
F=P / y=\frac{50 \times 100^{3} \mathrm{j} / \mathrm{sec}}{2.0 \mathrm{~m} / \mathrm{sec}}
\end{array} \\
& \mathrm{~F}=2.5 \times 10^{3} \mathrm{nc} .
\end{aligned}
$$

Now, sinve the block moves with umiform speed horizontally, the snbaianced applied foxce F must exacriy overcome the force of ficrion; hence the two are equal and

$$
\mathrm{F}_{\text {fric }}=2.5 \underline{\underline{x}} 10^{\mathrm{J}} \mathrm{nE}
$$

Obviously, the applied foree and the retarding force act in opposire direction. Since they are equal, the block is in dynamic equilibrium horizontaliy; hence it mafntains a constant speed.

Now that we have mentioned dixections--really for the first time in this lesson-iwe might expect you to ask abowt the vector or scalar nature of work, energy, and power: Have you wondered whether these are vector or scalar quanixitest you shoule have, you know.

Curiousty enough, work and energy are scalar quantities. The proor of this statement must await your stsdy of higher mathematics, so you must accept this statement on faich for the present. Power is a quotient; it is the wate of doing work, expending energy, or work per unit time. Now, if work is a scalar and time is also a scalar quantity, what must power be?
(40)

A A vectot quan iry.
B A scalar quancity.

YOUR ANSWER --- A

This answer is incorrect.

The determination of the bullet's K.E. as it leaves the muzzle of the rifle invoives:

$$
K_{0} E .=\frac{1}{2} m v^{2}
$$

To get the above answer, did you forget ro follow one of the directions implied in this equation? Check the equation again.

Please return to page 114 and select a better answer.

Now let's turn our extencion to the cotal momentum of rhe system. Designating :ightwa:d metion as (r) and lefeward motion as (-), then

```
cotal פ=mw, (-mu)
```

Thue, \pm ce bails of 0.20 kg each whth velociries of $+10 \mathrm{~m} / \mathrm{sec}$ and $-10 \mathrm{~m} / \mathrm{sec}$ respectiveiy, what is the socal momentum of the system?

1413
A The toral momentum of the system is $4.0 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$.
E The tuxa゙ momencum of the system is 20 joules.
C The qowal momenrom ar the system is zero.
YOUR ANSWER --- CYou don't have to "determine" the acceleration of the block as afreely falling body under ideal conditions. You should know its value.
In solving this problem, we shall want to know the acceleration of the block as it falls. What value will you use? (Refer to Figure 7 on page 120).
(19)
A $9.8 \mathrm{~m} / \mathrm{sec}$
B $9.8 \mathrm{~m} / \mathrm{sec}^{2}$
C $980 \mathrm{~cm} / \mathrm{sec}^{2}$
D $32 \mathrm{ft} / \mathrm{sec}^{2}$

YOUR ANSWER -.- ©

Almost, but nor quite. Perhaps you noted that the units given were pounds and feet, but were not clear on how to combine these units. Since there is no singie word in the English system to take the place of "jcule" in the MKS system, we form the English unit of work in the same way we combined units for our original metric ierm. You should be able to select the right answer now.

Please return to page 87 and choose again.

YOUR ANSWER --- D

This is incorrect; one of the answers given is correct.

The determination of the builet's $\mathrm{K} . \mathrm{E}$. as it leaves the muzzie of the rifle involves:

$$
K_{0} \mathrm{E}_{0}=\frac{1}{2 m v^{2}}
$$

In deciding on the above answer, did you forget to follow one of the directions implied in this equation?

Check the equation again.

Please return to page 114 and select a better answer.

YOUR ANSWER --- A

Actualiy, any or all of these quantities could be found from this data. However, we asked for the one thas could be found most conveniently. By this we mean, which relationsinip-the equation for finding work, P. E or K.E.--can lise these data as direct substitutions?

You answered work done" But to determine the work done you must know the force applied and the distance through which this force moved the stone in raising it from the ground to its final height.

You don'c know either oí shese facrs directly; hence it would not be most conventent as a first step to find the work done.

Piease revizn to page 171. Choose an answer that meets the quailifications of the data.

YOUR ANSWER --- C

You are correct. When the substitution and simpiification are handled properly, you obtain $W=$ mad and since $a=v^{2} / 2 d$ anen $W=m \times\left(v^{2} / 2 d\right) x a$ so

$$
\mathrm{W}=\frac{\mathrm{mv}}{}{ }^{2}
$$

This last relationship stares that the original work done by the constant force F moving the mass over the distance d has been lised to give the body an amount of energy equal to $\frac{1}{2} \mathrm{mv}^{2}$. We have succeeded, rherefore, in expressing the energy of the body in terms of its mass and velocity, witiout any reference whatever to original fosce that did the work, $0 x$ to the aistance that the body mowed while the force acted. Thus, this statement of the quantity of energy in the moving mass does not depend on irs history. Any mass moving with a speed v has an amount of enetgy equal $\frac{1}{2 m y}$ zegardiless of the method used to transter the energy to $1 t$.

The energy of a mass in motion is calied kinetic energy to distinguish it from anothor type of energy to be discussed in the next lesson. We will symbolize kinetic energy as K.E. In view of the method used to derive the equation $K . E .=\frac{1}{2} \mathrm{mv}^{2}$, which of the following would be a suitable energy unit in the MKS system?
(13)

A The joule.
B The foot-pound.
C The newton.

YOUR ANSWER --- A

Not always.

In any conversion from P.E. to $K_{\text {. }} E_{c}$, after most of the potential energy has been expended in increasing the velocity of a mass, the K, E. is much greater than the residual P.E.
 K.E. is much greatez than the P.E. when the process first begins.

Please return to page 16\%. Choose a better answer.

YOUR ANSWER --- A

Not quite. Let's remember to keep the units right. You know that acceleration cannot be measured in meters per second.

Please return to page 128 and select the right answer.

CORRECT SOLUTION: We hope you wsed the easy way:

At a heigh $=$ of 12 meters: $P . E=2 h=8.0 \mathrm{nt} \times 12 \mathrm{~m}=96$ joules. The total energy of the systemi is, "hen, 96 joules. Hait-way down, the height is halved; hence the $P_{0} E$, is alsc haived. Thus, the new P. E. is 48 joules. But sinze the totai energy $=K, E, F, E$, then the K. E at the halt-way matk is als -8 joules.

$\frac{\text { NOTEBOOK }}{\text { Lesson }} \frac{\text { ENTRY }}{2}$
 Lesson 12

'Irem 4 :
(d) In the case of a body in tzee tail, potential eneigy changes lineatiy ro kinetic energy, since petential energy is airectiy proporional to height above she reference zeto. To find the K. E of a body in free fall at any height, determine its P.E. at the initial height and its P.E. at the required height. The difference between these is the $K . E$ of rhe falling body at that hefght, provided that the falling body started from rest.

Before zoncluding this lesson, rhere is another kind of physicai quantity we must discuss. To illustrace this quantity, we should like to tell you a short anecdote.

Turn to page 136 , please.

A horse dealer advertised two work horses for sale. One, a shiny brown staliion, was to sell for $\$ 800$; the other, a beautiful black mare, was to go for $\$ 600$. A farmer who looked at the horses saw that they were both in good shape and appeared equaily strong. He pointed to a wagon fill of hay and asked the dealer if the brown stallion could pull the wagon to the top of a nearby hill. The deal said, "Yes." The farmer then asked if the black mare could pull the same wagon up the same hill and again the dealer said, "Yes."
"But," said the farmer, "if both horses can do the same job, why does one cost $\$ 200$ more than the other?" What do you think the dealer rold him? Think it over! Then turn to page 24.

CORRECT ANSWER: The kinetic energy of the meteor is $2.0 \times 10^{\frac{1}{3}}$ joules.

We hope you remembered to square the speed. That is:

$$
\begin{aligned}
& K_{2} E_{0}=\frac{\mathrm{mv}^{2}}{2}=\frac{4.4 \times 10^{3} \mathrm{~kg} \times\left(3.0 \times 10^{6} \mathrm{~m} / \mathrm{sec}\right)^{2}}{2} \\
& =2.2 \times 10^{6} \mathrm{~kg} \times 9.0 \times 10^{6} \mathrm{~m}^{2} / \mathrm{sec}^{2}=19.8 \times 10^{12} \text { joules } \\
& =20 \text {. } \times 10^{12} \text { joules to two significant figures, or } 2.0 \times 10^{13} \\
& \text { joules. }
\end{aligned}
$$

Note that joules is L abbreviated j. The meteor has a pretty large kinetic energy, doesm'r. Ycu'd expect it, of course, because ir has a large mass and a large velocity.

Now let's compute the kinetic energy of a 2.0 gm block moving along a frictionless table at a speed of $6.0 \mathrm{~cm} / \mathrm{sec}$ 。 (Warch those units!) What is the kinetic energy of this block?
(14)

A $3.6 \times 10^{-8} \mathrm{j}$
B $6.0 \times 10^{-5} \mathrm{j}$
C Neither of these.

YOUR ANSWER --- B

You zre coriect. There is more than enough experimental evidence av゙allabie tc permit us so conclude that this always happens.

A system starts with a cextain amount of energy that has been put into it by wotk done on the system. Regardiess of the kinds of conversions of energy that occur, P.E. to K. E , and vice wersa, the total energy is always the sum of the individual energies at any given time. Or, under ideal conditions, the rotal energy of the system remains constant, that is, energy is conserved:

NOTEEGOK ENTRY
 Lesson 12

4. Conservation of Energy for Idear Conditions
(a) Ideal conditions are conditions for which friction, air, resistance, and allied effects axe considered to be zero.
(b) Under ideai conditions, the energy of an isolated system is conserved. Work may be rransformed to either porential or kinetic energy, ox one kind of energy may be comverced to the ocher, without loss or gain.
!ct In an ideai interaction, the total energy of the system is the sum oi the poteritial and kine:ic energies, regaraless of the conversions that may take place from one kind to the other.

Before cortinuing, please tuxn to page 185 in the biue appendix.

Notebock Check

Referring to the notes for this lesson, what does notebook entry $1(c)$ teil us?
(28)

A It presents the equarion iox wozk.
B it presents an illustrative example.
C It gives the units of work:
D It defines kinetic energy.

CORRECT ANSWER: TOS night hawe writcen elther of these wh fo:ms:

$$
\text { i. } \quad y=\sqrt{2 a d} \text { or } 2 i \quad v^{2}=2 a d
$$

We want to find the K. E of the bicck as it feaches the ground after having failen freely fromites for 300 meners . Since K. $=\frac{1}{2} \mathrm{mv}^{2}$, it is sensible to use equation 2, becauce it is the squane of the velocity that we shall ultimateiy subetitute in the K. E equation.

Are you with us? We't find the vaije for v^{2}, as we have sald, by applying equation (2) above using 9.8 misec for "a" and 3.00 m ior " d_{c} " So,

$$
\begin{aligned}
& v^{2}=2 \times 9.8 \mathrm{misec} \\
& \mathrm{v}^{2} \times 3.00 \mathrm{~m} \\
& \mathrm{v}^{2}=58.8 \mathrm{~m}^{2} / \mathrm{sec}^{2}
\end{aligned}
$$

2. Ail right, We know that whe mess $\mathrm{m}_{\mathrm{i}} 155.00 \mathrm{~kg}$ and that w^{2} is 58.8 $\mathrm{m}^{2} / \mathrm{sec}^{2}$, Caiculate. the K 。E。 of whe block as it strikes the ground. When you have the answer, please seiect the sniy pertinerit srue statement below.
(20)

A We were justified in saying chat 147 joules of energy were stored In the block as the result of the 147 joules of work done in qalsing it:

B We weqe not jusuified in saying that the woik done in aising the blonk to the shelr was stcred as porential energy in the block.

C The answer obtained toz the $\mathrm{K} . \mathrm{E}$. of the block does not justify any conclusion at ail.

YOUR ANSWER --- C

You're right.

From the definition of power we have:

$$
P=\frac{W}{t}
$$

Since work is to be determined we must solve the equation for W :

$$
\mathrm{W}=\mathrm{Pt}
$$

The power consumed is 500 watts and the time under consideration is 1 minute. Now, a watt is a joule per second (or a j/sec) and i minute is 60 seconds, so

$$
\begin{aligned}
& W=500 \mathrm{j} / \mathrm{sec} \times 60 \mathrm{sec} \\
& \underline{W} \equiv 30,000 \underline{j}
\end{aligned}
$$

Very often, especially in flash photography, you will run across a unit called the watt-second. (w-sec). Look at the solution above carefully while you try to choose the only true statement from the group below:

What is the watt-second?
(37)

A A unit of force and is the same as a newton.
B A unit of energy and is the same as a joule.
C A unit of power and is the same as a joule.
D A unit of work and is the same as a newton.

You have now completed whe sredy porrion of iesson 2 and your Study Guide Computex Card and A V Compcter Card shocid be pioperiy punched in accordance with your perfcimance in this Lesscn.

You should now proceed to complete your nomework reading and problem assignment. The probiem solu"lons $=$ be cieariy writcen out on $8 \frac{1}{2}{ }^{\prime \prime} x$ di" ruled, white paper, and then submi with yvur riame, date, and identification number. Your inscructor wid, de your pzobiem work in terms of an objective preselected scaie on a Pioviem Evaluarion Compucer Caxd and add this restilt to your somputer pwofile.

You are eligibie for the Post Test foz rhis Lesson only after your homework probiem solutions have been submisted. You may then zequest the Posit Test which is to be answered on a Post Tesc Compucer Caxd

Upon completion of che Post Test, you mey prepare for the next Lesson by requesting the appropziace

```
i. study guide
    2. prcgiami conczoj macrix
    3. set of computer sards ior zhe lesson
4. audio rape
```

If films or other visual aids ate needed for this lesson, you will be so informed when ycu reach che poink wheate they axe requixed. Requisition these alds as you reach chem.

Good Luck:

YOUR ANSWER --- D

You are correct. In climbing the ladder, the boy uses muscular force to press downward on each rung, and the rungs push upward on him with the same force. So, to raise his weight of 120 lb , he must push with a force of 120 lb , the reaction force being in the direction of the motion.

So that you can convert these figures to metric MKS units, make this notebook entry:

NOTEBOOK ENTRY Lesson $1 \overline{2}$

(Item 1)
(e) Conversion Ratios
1 pound $=4.45$ newtons

1. joule $=0.738 \mathrm{ft}-1 \mathrm{~b}$

Apply the principles you have learned thus far to the solution of this problem: A 400-1b ($1,800 \mathrm{nt}$) safe is moved along a level floor by an applied horizontal force of 450 nt . If the safe is moved 25 meters, how much work is done?
(9)

A 10,000 joules.
B 11,000 joules.
C 45,000 joules.

YOUR ANSWER --- B

You axe costect
In the aneodote about the horse-dealer and Iarmer, it should have been quite cbyiows that the horse that could get the job done faster would be mete valuabie. The zaea of speed, of course, involves the time required to do a specifjed amount ot work.

The same is true of the bcok-stacking ex:mple: You would be a more desitabie employee than youz ilutie brothe becicse you couid scack the books ≥ 0 times as fast as he could. Here again, the time you would need to compiete a paxticular job would be considerably smallez.

From a practical point of wiew, then, we need a physicai mears by which to grade a horse, a machine, or a person as co ability to get a job done quiskly. So we proceed to invent such a means by detining a new quantity called power.

NOTEBOOR ENTRY

5. Power
(a) Power is deitined as the tame zate of doing work.
(b) This definition in the form of an equation is:

$$
P=\frac{W}{6} \quad \text { or } P=\frac{F d}{r}
$$

(i) As showt, power is inversely proportionai to the rime tequixed to do a specilic amount of wozk. That is, an andmal or machine thar needs mose time to do rhe work has less power, comparativeiy.
(d) In the MKS syscem, the vilt of power is the jises or joule per second.

A 500-nt boy can ciimb a 6.0 -meter ladder in is seconds. What powet does he use?
(34)

A $45,000 \mathrm{~J} / \mathrm{sec}$
B $200 \mathrm{j} / \mathrm{sec}$
C Nedther answer is coyrect.

CORRECT ANSWER: The potential energy of the ball at a height of 39.2 meters is: P.E. $=\mathrm{wh}=9.8 \mathrm{nt} \times 39.2 \mathrm{~m}=384$ joules.

Write this figure down and put it aside for later use.
The next step is to calculate the kinetic energy of the ball after it has fallen for 1.00 sec . Since $K . E .=\frac{1}{2} \mathrm{mw}^{2}$, we must compute the of the ball at this time. What's the missing word:
(25)

A Mass.

B Speed.

YOUR ANSWER -.- B

Gcod work! You're absolutely correct. A watr is a joile pez second if we now replace the watt with the joule $p \leq x$ seccna, we have rhis:

$$
1 \text { wart-second }=\text { joule/sec } x \text { sec }=\text {. Joule }
$$

The jovie and watr-second car be used incerchangeabiy in any probiem In straightforward mechanics situations, the joule is usually preferred; but when electricity is involved, the watt-second is of cen employed:

You probably know that your electric bilis are based on the readings of the power company's kilowatr-hour metezs. These may be iocared in your basement, in an apartment ancicsuife, $O z$ in a waterproot housing outside your - house. Make it a point co inspery one ci these meters and asswie yourselif that it measures kilowatt-hours. Ask ycur toiks to show you one of their bilis and observe that the charge is based on some tigure such as 5 cents per kilowatt-hour.

What is the kilowatt-hour?

It is a unit of \qquad $=$

A Enezgy.
B Power.
C Power per unit time.

YOUR ANSWER --- B

You are correct. Power is a quotient of two scaiats: hence if, too, is え E alar

Thus, work, energy, and power ate all scialar quantivies. When a man of machine does work or expends energy, it makes no difference as to the difection of the force in $W=F d$, for the wotk done is merely a number and a unit without directional signitinance. if a machine produres 15,000 jouses of energy, this is the enexgy ourpur segardiess of the airection in which motion may cecur.

Conrsast rhis with momencime Momentum is a vector quantiry and ies

For example, a billiard bail rolls along a table from the north side toward the south side with a uniform velocity of $10 \mathrm{~m} / \mathrm{sec}$. If the mass of the ball is 0.20 kg , then the momentum of the bali is

```
    \vec{p}=m\vec{v}=0.20\textrm{kg}\times10\textrm{m}; ser=2.0 kg-m; sec toward the south
gnd Its kineric enecgy is
    K.E. = \frac{1}{2miv}
```

As you venture into more advanced physics, the vector nature of morentwm and the scalar nature of energy will assume increasing importan.e in your chinking.

Please turn to page 83 ro continue.

YOUR ANSWER --- A

You forgot something:

The equation for kinetic energy is $K_{0} E_{0}=\frac{1}{2} m^{2}$ not $\frac{1}{2} m v$.
Does this give you the clue to your mistake? We hope so.

Please return to page 123. Choose the right answer this time.

You are right. The equation we want is: $K . E==\frac{1}{2} m v^{2}$.

We know the mass of the bomb is $1,020 \mathrm{~kg}$. We are also told that the bomb falls $2 / 3$ of the way down from its original height, a distance of 6.00 $\times 10^{3} \mathrm{~m}$. The velocity at this height could then be found from:

$$
v^{2}=2 a d=2 g h
$$

So, the kinetic energy is:

$$
\begin{aligned}
& \text { K.E. }=\frac{1.02 \times 10^{3} \mathrm{~kg} \times\left(2 \times 9.80 \mathrm{~m}_{\mathrm{sec}}{ }^{2} \times 6.00 \times 10^{3} \mathrm{~m}\right)}{2} \\
& \text { K.E. }=1.02 \times 9.80 \times 6.00 \times 10^{6}=6.00 \times 10^{7} \text { joules }
\end{aligned}
$$

After the bomb has fallen $2 / 3$ of the way, its kinetic energy is 6.00 $\times 10^{7}$ joules.

Now, how about the simpie way to do the same probiem?

Please turn to page 149.

Suppose we calculate the P.E. of the boinb at the altitude of the plane:

$$
\begin{aligned}
\text { P.E. } & =\mathrm{mgh}=1.02 \times 10^{3} \mathrm{~kg} \times 9.80 \mathrm{~m} / \mathrm{sec}^{2} \times 9.00 \times 10^{3} \mathrm{~m} \\
& =9.00 \times 10^{7} \text { joules. }
\end{aligned}
$$

After the bomb has fallen $2 / 3$ of the way down, its height has decreased by $2 / 3$. Hence its P.E. has decreased by $2 / 3$ of its former value, and thus $2 / 3$ of the total has been converted to kinetic energy. Thus,

$$
K_{0} E_{0}=2 / 3 \times 9.00 \times 10^{7} \text { joules }=6.00 \times 10^{7} \text { joules }
$$

You see, we get the same answer without becoming involved with $\mathrm{w}^{2}=2 \mathrm{gh}$
What is the kineric energy of an 8.0 -nt ball that has fallen hair-way
down from a height of 12 meters? Write your solution; then turn to page 135 .

You are correct

Since work is caiculared using $W=F d$, then the weight ot the block must be determined from its mass, Newton's Second Law states chat:

$$
\begin{aligned}
& \text { so that: } \quad \begin{array}{l}
w=m g \\
w=5.00 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{sec}^{2}
\end{array} \\
& \omega=49 \mathrm{n} \\
& \text { Then: } \quad W=1,9 \mathrm{nt} \times 3.00 \mathrm{~m} \\
& =\text { ss zouies }
\end{aligned}
$$

So fax̃, so good. Now, an moving the biock ovez pach BC infigute : on page 170 which is horizontail, there are no retazding iorces acting on in at all; gravity has no horizontal component and we assume fircicion is zeic. If there are no retarding forces, then no force is required to keep the biock moving horizontally toward the right. It is ifrst acceierated and rhen decelerated to its final position, where it is ar rest. Thesetoe, zou wotk is done in moving the block along paih BC.

The torai amount of wozk dere, then, in phacing the biock cir the sheit is 347 joules. Lec's bear this in mind. Now the biock zests mainomess art the sheif. How much kiriecic energy aces it have?
(17)

A It has no kineric energy.
B It has 147 jouies oi kinetic eneigy
C The data given is not sutficient to caiculate the kinetic eneagy.

YOUR ANSWER -~- C

The vector nature of momentum compeis us to conclude that when two balls of equal mass and speed, each moving in opposite directions, are considered as a system, then the total momentum of this system is zero. This is quite reasonable. Suppose the balls were made of putty; suppose further that if they were allowed to collide head-on, they wowld stick together in an inelastic collision. Then you could predict, aimost intuitively, that they would come to a dead stop after impact, the final speed being zero. In that case the total momentum would also be zero. Note that this result can be obtained only if the masses are equal and rhe speeds have the same magnitudes in opposite directions.

But what of the balls' energies in the same collision sftuation? Here again, since the balls come to rest, final speed is zefo. Then the kinetic energy, roo, must be zero. This creates an apparent inconsistency: If the net K.E. of the system, is the sum of the individuai K.E.'s beiote collision and it is zero after collision, what happened to the Principle of Conservation of Energy? No such inconsistency is associated with the interchange of momenta, because the vector nature of momentum tells us that the total momentum is zero before and after the collision. But this does mot apply to kinetic energy.

We leave you with this dilemma in closing this iesson. Think about it. The problem will be resolved in the next lesson.

Please go on to page i 52.

In summary, work is defined as the product of the component of a force along the direction of motion and the distance moved as a result of the acticn of this component. In other words, work is directly proportional to the component of force cauṣing motion and to the magnitude of motion thus produced. in mathematical shorthand this reads:

$$
\mathrm{w}=\mathrm{Fd}
$$

Remember that F is the component in the direction of mosion and that d is che displacement caused by the component.

In the MKS system, work is measured in newton-meters, since F is stated in newtons and d is stated in meters, For brevity and convenience, a newton meter is calied a joule, abbreviated 1.

Please turn to page 14.

YOUR ANSWER --- A

You are conter. Since the definition of kinetic enexgy was obtained directly from the detinition of work, then energy and work units must be identical. In addition, it you substicure units in the K. E. equation, the result is joules. That is:

$$
\begin{aligned}
& K E=\frac{1}{2} m v^{2}=k g \times \frac{m^{2}}{s e c^{2}} \text { or breaking this ap into rwo parcs, } \\
& K_{0} E_{0}=\frac{\mathrm{kg}-\mathrm{m}}{\mathrm{se}} \mathrm{x} \mathrm{~m}=\text { newton-meters }=\text { jouies } . \\
& \text { B } \\
& \text { nt. }
\end{aligned}
$$

NOTEBOOK ENTRY
 Lessen 12

2. Kinetic Energy
(a) Kine ic energy is energy transferred to a mass in the form of an increase of velocity.
(b) The kinetic energy of a body starting from rest is equal to the work done in cawsing the body to atein ins stace of motion.
(c) K, E $=\frac{1}{2 m} v^{2}$. Kegardiess of the method used to cause mass m to take on a given weiocity v, its kinetic energy is aiways measurable as onehalf the producr of its mass and the square of ins velocity.
(d) Kinetic energy is measured by the work done to cause a mass to achieve a given velocicy srarting trom rest; hence the energy unit is the same as the wo:k unit, namely the joule.

Imagine yourself in a space ship looking out through the observation port. Suddenly, in the distance, a treteor appeaxs; you grab your superinstruments and measure its mass and speed as it goes by. Its mass is $4.4 \times 10^{6} \mathrm{~kg}$; its speed is $3,0 \times 10^{3} \mathrm{~m} / \mathrm{sec}$. A quick calculation shows its kinetic enexgy to be ____ joules. What answer do you get? Write it; then please turn to page 137.

This page has been inserted to maintain continuity of cext. It is not intended to convey lesson information.

This page has been inserted to maintain continuity of text. it is not intended to convey lesson information.

Quire right. If the block is at rest, then $v=0$ and $K_{0} E=\frac{1}{2} m v^{2}=0$ 。

But think a moment. It required 147 joules of work to get the biock to the shelf. And we know that work is a measure of energy. So, if 14% joules of work were done on the block, it has to have 147 joules of energy, somehow. Otherwise much of the reasoning that led us to this point in cut study has been meaningless.

The answer, surprisingly, is quite simple. The block does have 14 : joules of energy, but it is not kinetic energy. This type of energy is called potential energy, abbreviated P.E.

Here's how we arrive at this conclusion. We have done 147 joules of work to raise the block to the shelf. If the shelf were now removed; the block would return to the ground as a freely falling body gathering kinetic energy as it accelerated. Thus, in its raised position on the shelf, we have apparently stored in the block a capability to produce kinetic energy if the block is allowed to return to the position where work began. This stored capability is called potential energy ($\mathrm{P} . \mathrm{E}_{\mathrm{o}}$) because it can turn into kinetic energy.

Please go on to page 157.

The argument is convincing, but needs just a bit of quantitative bolstering to really tie up the loose ends.

We propose to show now that there are 147 joules actually stored in the gravitational field between the block on the shelf in Figure 7 on page 170 and the earth. The method is mathematical, but quizo easy to follow. We'll calculate the K.E. that the block will develop as a freely falling body when allowed to drop to the ground from the height at which it now rests, 3.00 meters.

The mass of the block is 5.00 kg . What quantity should we determine now in order to calculate the kinetic energy acquired by the block at the instant it reaches the ground?
(18)

A Its velocity when it reaches the ground.
B Its initial velocicy.
C Its acceleration as a freely falling body.

YOUR ANSWER --~ B

Your choice indicates that you didn't watch cicsely encugh; the "v" in the given equation was not squared. Perhaps you just dor't remember the equation; in that case, you had better use your nores to refresh your memory.

Please return to page 32. You shouid be able ro pick the aight answer.

YOUR ANSWER --- A

This is not correct,

Work is done on the block, because a force must be exerted upward on it to raise it from the ground. If the force is a constant one, then it must continue to act over the entire distance of 3.00 meters. So, we have a force in the direction of motion and a distance moved; this automatically means that work has been done on the block.

Please return to page 170 and try again.

YOUR ANSWER --- D

This is not true.

One of the answers does concain just such a quantity. vertical distance is height, and a ladder is a means of attaining height what new concept or idea has been introduced?

Please return to page 24 . You can find the iight answer.

YOUR ANSWER --- A

You misinterpreted the definition of power.

Power is the time rate of doing work and is calculated from:

$$
P=\frac{W}{E}
$$

Note that the t is in the denominator. Apparently you thought it was in the numerator: and mulciplied the work by the time. This is, of course, incorrect.
L. Please return to page 143 and select another answer.

YOUR ANSWER --- A

This is incorrect.

The way to determine the meaning of a derived unit like the wattsecond is to replace the watt with its synonymous unit, the joule per second, and then simplify the combination, if possible:

Try it. Then please return to page 140 and choose the right answer

This is not correct.

The substitution brings about this first result:

But when this is simplified, you don't get the answer you selected.

Please return to page 82 and choose a better answer.

You are correct. Speed is defined $\Delta d / \Delta t$, or change of displacemenr with respect to time. (Note: $\Delta d / \Delta t$ is a definition of velociry, if the situation calls for vectors rather than scalaxs. Since we have not yer discussed the nature of work, energy and power in this respeci, we shall continue to use scalar quantities like speed.)

Thus, if $\Delta d / \Delta t$ means speed, then the power equation can very well be written:

$$
P=F w
$$

in which $v=$ speed and replaces $\Delta d / \Delta t$.
Let's return to the problem: The motor is rared a\%. 00 kw and is to raise a load of $2.75 \times 10^{4} \mathrm{~kg}$. How fast will the lcad go up? (The speed is to be given in meters per minute.)

Can you work this without further help? Try it. Take your time and be careful with units. Firite out your whole solution; rhen follow our solution as presented when you turn to page 89.

YOUR ANSWER --- A

No, it is not.

Work is a scalar quantity; time is a scalar quantity. Power work/time or scalar/scalar. Although we have never explicitly said so, it should be obvious that one cannot hope for a vector quantity to emerge from a division of one scalar by another. Where would the direction-factor have its source?

We know this: A vector multiplied or divided by a scalar yields a vector quanticy. For example: $v=\Delta d / \Delta t$; also $F=$ ma. To this we can add: A scalar multiplied or divided by another scalar yields a scalax quantity.

Please return to page 125 and choose the aiternative answer.

YOUR ANSWER --- B

We consider this answer a mechanical blunder. We are certain you know that the foot-pound would never be a unit for any physical quancity in the MKS system。

So, return to page 132 , please, and choose the right answer.

YOUR ANSWER --- B

Good : The kiretic energy is obtained from:
$K . E_{0}=\frac{\frac{\mathrm{mv}}{}{ }^{2}}{2}=\frac{.00 \mathrm{kgx}(9.8 \mathrm{~m} / \mathrm{sec})^{2}}{2}=48.0$ jouies.
Now let's see where we stard. We found that after 1.00 sec of tree fall, the potential energy of the bail had decreased from its initial value of 432 joules to a new value of 384 joules, (Remember? You wrote the new value tor late:: use:

Next, we caicriated the kineric energy of the ball aiter $i .00$ sec of free tall, 48.0 joutes

So the baii has at this time
384 joules of $P . E$ and 48.0 joules of K .E.

The total energy of the ball is chus distributed between its potential and kinetic energies. But, what is most importanc, its cotal energy is still 432 joules because $384+48.0 \equiv 432$. Whenever this experiment is performed under nearly ideal conditions, the same important fact results.

During a conversion from P.E. to K.E., or vice versa, how is che energy always distributed?
(2.7)

A The P.E. is nomalily greater chan the K.E.
B The cotai energy is the sum of the instantaneous values of the P. E. and K. E.
C The residual $P \cdot E$. after rime t is the sum of the total energy and the K.E. at that instant.

YOUR ANSWER --- C

Vertical distance has played an important role throughout our development of the concepts of work and energy. The very definttion of potential energy involves a "height" factor. So "height" or vertical distance is not new to us in the concepts of work and energy.

Please return to page 24 and pick a better answer.

Very good: To solve this, you must zemember that the conditions are ideal, and that all of the work done by the boy goes into developing the kinetic energy of the satt. So, the work done is:

$$
(W=F d) \quad W=64 \mathrm{nt} \times d \text { meters }
$$

The energy the cart has when che force stops acting is

$$
\left(K_{0} E_{0}=\frac{1}{2}_{2} \mathrm{mg}^{2}\right) \quad K_{c} E_{0}=\frac{72 \mathrm{~kg} \times(4.0 \mathrm{~m} / \mathrm{sec})^{2}}{2}
$$

Since all of the work turns inco kinetic energy, then W and $K_{\text {. }} E$, may be equated and we have:

$$
\begin{aligned}
64 \mathrm{nt} \times \mathrm{d} \text { meiex } \mathrm{s} & =\frac{72 \mathrm{~kg} \times(4.0 \mathrm{~m} / \mathrm{sec})^{2}}{2} \\
\mathrm{~d} & =\frac{72 \mathrm{~kg} \times 16 \mathrm{~m}^{2} / \mathrm{sec}^{2}}{2 \times 64 \mathrm{nt}} \\
\mathrm{~d} & =9.0 \mathrm{~m}
\end{aligned}
$$

Please turn $: 0$ page 183 in the blue appendix.

Now lex's constder another facet of the energy sencept.

Figure ?
As shown in Figure 7, a $5.00-\mathrm{kg}$ block is xaised rxom the fiook to a shelf 3.00 m high by moving it vertically a distance of $3,00 \mathrm{~m}$ and then horizontally a distance of $\mathbb{I} .00 \mathrm{~m}$ to the shelf. How much work is done on the block over path $A B$, from the flocr verticaliy upward to sheif level?
(26)

A No woxk is done.
B 15.0 joules.
C $14 i$ joules.
D None of the above answers 1 scorrect.

YOUR ANSWER --- C

You are correct. The kinetic energy is:

$$
\begin{aligned}
K . E_{0}=\frac{\mathrm{mv}^{2}}{2} & =\frac{4.0 \times 10^{-3} \mathrm{~kg} \times\left(7.0 \times 10^{2} \mathrm{~m} / \mathrm{sec}\right)^{2}}{2} \\
& =\frac{4.0 \times 10^{-3} \mathrm{~kg} \times 49 \times 10^{4} \mathrm{~m}^{2} / \mathrm{sec}^{2}}{2} \\
& =980 \text { joules }
\end{aligned}
$$

Here's another problem you can solve: (COPY IT.)
A $20-\mathrm{kg}$ scone is dropped fxom a certain height and strikes the ground with a speed of $12 \mathrm{~m} / \mathrm{sec}$. From what height was it dropped?

Think about this problem for a f f w minutes. You are told the mass of the stone and its velocity when it raches ground level. Which of the following is most conveniently determined from this data?
(22)

A The work done in raising the stone to the height from which it tinally ialls.
B The kinetic enexgy of the stone when it reaches ground level.
C The potential energy of the stone.

YOUR ANSWER --- C

Think what this would impiy if it were true!

It means that the residual. P.E, would be greater than the total eneigy of the system by an amount equal to the K. E at the rime. This is impossibie, of course. It's like saying that a wedge cut our of a perfectiy uniform apple pie is heavier than the whole pie! Or that a dime weighs moze than a pocketful of dimes?

These $1 s$ a better answer available Flease zeturn $x=$ page 5 and select it.

Let's straighten this our.

Work is the product of a force and the distance that this force causes something to move. That is, $W=F d$. The phrase "the distance that this force causes something to move" should give you the clue necessary to answer the question. We agree that F does work because it causes the block to move horizontally over 0.70 meters, resulting in a work of 2.5 nt .

Does F_{T} cause anything to move? This force is a reaction force springing from the weight of the block. It holds the block in vertical equilibrium. In that case, how much work does F_{T} do?

Please return to page 99 and seleuc one of the cther answers.

YOUR ANSWER --- A

Not this one! The equation for work is in irem 1(b).

Are you letting your notebock become sloppy? Ir you're going to make progress, you have to keep your notes neat and in order.

Please return to page 138 and shoose another answer.

15

YOUR ANSWER --- B

Of course. Anl ireeiy failing bodies have the same acceleration,
namely, $9.8 \mathrm{misec}{ }^{2}$ in the MKS system.
So, cextaitily, this need not be determined.

Go back to the original question by turning to page 157 now, and think it over once again.

ZOUR ANSWER－－－C

A littie more thought on yout pazi would demonsiate fexidbly rbe ertor in this answer．

If you say that the magnicude of mgh＇ 1 s greater than that of migh， yon are saying that at the completion of the filst swimg oi the penowan， there is more total energy in the system ：nan there was at the statt ir
other words，you are saying that the pendulum is somehow ineainng eneigy ou： of nothing．If this actually could havpen，what a differert we：id rhis would be．We couid set up pendulums wherever required as sclixess cy enesgy；a longet wousa we need perrolewm，coat，di axcmic energy．Cuis wania be＝

The Principle of Energy Consexvasion is orten scazed in these ients： Energy inn neirher be created no i descroyed；it can onfy be changed in form．Although this statement leaves much to be desired，it is essenkiaily ときue。

So，at the end of the first swing－or any swing－－the energy conterit of the bob of the pendulum can be no greater than it was at the beginning of the swing．

Please return to page 8 a and seiect a more surabie response，

YOUR ANSWER --- B

Almost, but not quite. Perhaps you noted that the units given were pounds and feet, but thought char work must always be expressed in joules. The principle of work as the product of force times distance in the direction of the force is unchanged. However, there is no single word in the English system for "joule" in the MKS system. You should be able to select the right answer now.

Please return to page 87 and choose again.

YOUR ANSWER --- B

Well, iet's see.

From the definition of power we have:

$$
\mathrm{P}=\mathrm{W} / \mathrm{t}
$$

We want to determine work, so we'il so ve this tor W :

$$
W=P t
$$

The power is 500 watts and the time is i minute. Since a wart is
a joulessecond, we can substirure jisec for watts so thar:
$W=500 \mathrm{j} / \mathrm{sec} \mathrm{x} 1$ minute.
Note that the time units are different so that you cannot cancel them and come out with foules as the unit of your answer.

Please return to page 12l. $T^{\text {re }}$ Ink this out; then make ancther selection.

YOUR ANSWER --- D

One of the answers is correct.

You may have made a mistake in arithmetic: Repeat the solution; you can determine the right answer. Remember thac weight is a force, not a mass.

Please return to page 170 and try again.

This page has been inserted to maintain continuity of text. It is not intended to convey lesson information.

Piease listen to Tape Segment. for Lesson 12 before starto lng to answer the questions beiow.

Data Item A: In Newton's Second Law, $F=k m a, k=1$ and is dinensioniess.

Here. x is not equal to $I g$ nor is it dimenless.

QUESTIONS

io Which one of the following is the correct unit for work in the MKS system?

A the kilogrammeter
B the metermewton squared.
C the newton
D the newtonometer
E newton per meter

2e Which one of the following is the defining equati . 1 for the physical quantity we call work?

A $\quad W=\mathrm{kFd}$
$B \quad W=\mathrm{kmg}$
C. $\quad W=\mathrm{kF} / \mathrm{d}$

D $\quad \mathrm{W}=\mathrm{kma}$
$\mathrm{E} \quad \mathrm{W}=\mathrm{kFd} / \mathrm{m}$
3. In the defining equation for work, the proportionality constant k may be set equai to unity (i) because

A work turns ouc to be a scalar quantity.
B work turns out to be a vector quantityo
C we have not yet defined a unit of work so that we may now define it in terms of unit force and unit distance.
$D \quad$ the constant of proportionality in a linear equation like the one which defines work is always unity。
E the defining equation for work does noti conm tain a fractional term, hence k must equal equal unit to keep the units correcto

Please return to page ilg of the STUDY GUIDE.

WORKSHEES

Piease listen to Tape Segment 2 for Lesson 12 before soartm ing to answer the questions belowo
nest
Data ItemA：Refer to the dapram be wow

QUESTIONS

funuticnsaregiven in Daca ItemBo
A 16．8 jovies
B 63 joules
C 7.0 joules
D 50 joules
E 506 joules
i＋

```
Assume "riez e "~ jre
    di̇geam is 3; degrees
    arc inat F < < ! % I!
    the b-0-k &s -a sed
    to m.ve 3o0 m in tre
    direx:isin ct dg n-w
    munc woik is dcx=?
    (Tr&e appi=ximaice va,-
    ues uf sume \thereforet vile
    c.rmmon tragusam&:%%
```

5．If the work in a nor zontal direetion resuits in obn stant velocity of the biock：then ai＂of rine work is

A being done aganst gravityo
B being done against the ve：tiょうa ompunetio f gravityo．
C being done ageinst the norizonta ompurm ent of gravity。
D being done against the fome of frsetiono
E going into increasing the x^{2} net：e energy of the block．

6．The magn tude of the verifoai oomponenc of $F: 2 i$ noy is A 2.1 nt ．B 0 n $6 \mathrm{nt} \mathrm{C} \quad \mathrm{irinz}$

Please return to page 87 ot the STUTY GUIDE


```
the quert.orgs re_...io
```


$$
\begin{aligned}
& \text { O. } \because \mathrm{K} \text { 。 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { C ar.j } \because \cdot . \rightarrow \text { re wes: rat woma dause }
\end{aligned}
$$

$$
\begin{aligned}
& \text { E a: iome ai \&.. } \because \text { ace the o.vowis ult- } \\
& \text {-matesy - ime }- \text {-esto }
\end{aligned}
$$

D does work r ．y, \therefore nard $n_{+} y$ i：prournt \because res：in a ϵ ajery snam time。
E muss a

 stopping precess，siori y．．．．：iand
 b．c．k ．！ine f．seri or if tis moiscno

 does an ysá sartio
D mus：a ees min is ine o ene inan it

 s apf．：ed。

QUESTIONS

 Less norizontai tabie az A. The work then reauired to move the bionk from A : B :

 vant to tnis examp.e but is a.si rama?
 top of this p,ane whid be 45 , Ju. so
B The wort done in isf:ing a is nt weigr.* i, the top of any 3:4:5 pagre is $4 ;$ juleso
C Trie poter.ia. ene roy a quitrea oy a given mass raised to a g-ven neigrit os the same regardiess it the path iaken ti tris he:phie
D The K.E. auquired by the o.iok siadicif up
 while go:ng stristri: uk.
E If the ang.e of tne pane were a nuteased by shortening AC ard AB. mere work whind be required :0 s.lide the bivek up to C_{0}

$$
\begin{aligned}
& \text { E } \quad 4 .
\end{aligned}
$$

 al Eotentia energy as drabica siroe ine welpht it tie

 when $P E=20$ time $1503 t$ seco

Now calculate the measured ratio $K E_{1} K_{2}$ ．Dortt toraet \because square the ines．

A Be：B ie ween ietu arid ty
C betweer－$\%$ and ．n5
D be weer ：o j\％ara 2% 。
E De：weer i\％arat 3% 。
 poteratial energy if the sper re as quadanpedo
 F：i ，arger compress ag í 30 seco

A zero．B beween ze：．aria 2% ．
C between 2% and $3 \%^{\circ}$ ．D vetweer． 3% and 3% ．
E more tnan $5 \%_{0}$
PLEASE RETURN NOW TO PAGE 35 OF THE STUDY TUIDE。

FOMEWR PROBEEMS

 \therefore a now mucn w an ad the man as on the cart? (b) What

 "ataz. Assming that a wenerncoz operarar at 200% efr
 d.a the fanera:o. ao:
 we ghing 406 ne moves up the hith at $55 \mathrm{n} / \mathrm{sec}$. What

 fres wruated thes petwo 'Use eneryy considerathons in abvap tha protamer

50 A 2whe biock of ocpoer sidies along a floor as a result of an mpulae previcubiy appied to it. After a time. 4te inntal speed of 4 m -sec has decreased to i m/seo. (a) hom muth woik dad the trotion force exerted by we foce ot he bosk co? ibl if the reduction of veln ady arearbed above ocured ever a distance of 10 m

6. Ar antomobite or mass aco kg meis down a hilit tnat is 70 m hegh and shen imediaveiy up an adjacent hill that, is ox'y 50 m nigho what de the kinet-o erergy of the oar fus as trarmues ay the top of the second dill? (Ignase frothoai affecrer)
 tra is aocenereted in à becation su that it is moving Whth 10 the speed of ifgit, what is its kinetic energyo (The afesd of light $15300,000 \mathrm{~km}$ acol.
8. f stone of mass 0.2 kg fains freely from the top of a hiff 50 in avore the ground. At the instant that it is the mem the ground. what as the magnitude of its kinet: c energy?
9. An ascher appiying an average force of 8.0 nt to a bown string. puils the center of the string back a distance of 20 cmo The arrow fiteed to the string at this point has a mass of co2 Kg. What véuoty will it have just as it teares the bow after has been released by the archer?
10. The bob of a penduium rises $0,1 \mathrm{~m}$ from its lowest point at the top of ats swing. If its mass is $i 00 \mathrm{~kg}$, how fast is it murng at rhe lowest point or its swing?

[^0]: - YOUR ANSWER --- A

